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The immense amounts of source code provide ample challenges and opportunities during software development.
To handle the size of code bases, developers commonly search for code, e.g., when trying to find where a
particular feature is implemented or when looking for code examples to reuse. To support developers in finding
relevant code, various code search engines have been proposed. This article surveys 30 years of research on
code search, giving a comprehensive overview of challenges and techniques that address them. We discuss the
kinds of queries that code search engines support, how to preprocess and expand queries, different techniques
for indexing and retrieving code, and ways to rank and prune search results. Moreover, we describe empirical
studies of code search in practice. Based on the discussion of prior work, we conclude the article with an
outline of challenges and opportunities to be addressed in the future.
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1 INTRODUCTION
Many kinds of information are stored in digital systems, which offer convenient access, large
storage capacities, and the ability to process information automatically. To enable people to quickly
find digitally stored information, research on information retrieval has led to powerful search
engines. Today, commercial search engines are used by billions of people every day to retrieve
various kinds of information [111], such as textual information, images, or videos.

As software is becoming increasingly important in various aspects of our lives, a particular
kind of information is being produced in incredibly large amounts: source code. A single, complex
software project, such as the Linux kernel or modern browsers, easily comprises multiple millions
of lines of source code. At the popular open-source project platform GitHub, more than 60 million
new projects have been created in 2020 alone [31]. The sheer amount of existing source code
leads to a situation where most code to be written by a developer either has already been written
elsewhere, or at least, is similar to some code that has already been written [46, 101, 136].
To benefit from existing source code and to efficiently navigate complex code bases, software

developers often search for code [108]. For example, a developer may search through a code base
she is working on to find where some functionality is implemented, to understand what a particular
piece of code is doing, or to find other code locations that need to be changed while fixing a bug.
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Fig. 1. Papers on code search discussed in this article.

Beyond the code base a developer is working on, developers also commonly search through other
projects within an organization or through open-source projects. For example, a developer may
look for examples of how to implement a specific functionality, search for usage examples of an
application programming interface (API), or simply cross-check newly written code against similar
existing code. We call these and related activities code search. To support developers during code
search, code search engines automatically retrieve code examples relevant to a given query from
one or more code bases.
At a high level, the challenges for building a successful code search engine are similar to those

in general information retrieval: provide a convenient querying interface, produce results that
match the given query, and do so efficiently. Beyond these high-level similarities, code search
comes with interesting additional opportunities and challenges. As programming languages have a
formally defined syntax, one can unambiguously parse source code, and then analyze and compare
it based on its structural properties [2]. Moreover, source code also has well-defined run-time
semantics, as given by the specification of the programming language, e.g., for Java [32], C++ [1],
or JavaScript [26]. That is, in contrast to natural language text and other kinds of information
targeted by search engines, the meaning of a piece of source code is, at least in principle, well
defined. In practice, the code in a large code corpus often is written in a diverse set of programming
languages, building on various frameworks and libraries, and using different coding styles and
conventions [44]. As a result, code search engines must strike a balance between precisely analyzing
code in a specific language and supporting a wide range of languages [112]. Finally, the language in
which a query is formulated may not be the same as the language the search results are written in.
For example, many code search engines accept natural language queries or behavioral specifications
of the code to retrieve, which requires some form of mapping between such queries and code [89].

Motivated by the need to search through the huge amounts of available source code and by the
challenges and opportunities it implies, code search has received significant attention by researchers
and practitioners. The progress made in the field is good news for developers, as they can benefit
from increasingly sophisticated code search engines. At the same time, the impressive amount of
existing work makes it difficult for new researchers and interested non-experts to understand the
state-of-the-art and how to improve upon it. This article summarizes existing work on code search
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Fig. 2. Overview of the topics covered in this article.

and describes how different approaches relate to each other. By providing a comprehensive survey
of 30 years of work on code search, we hope to provide an overview of this thriving research field.
Based on our discussion of existing work, we also point out open challenges and opportunities for
future research.

Figure 1 shows the number of papers we discuss per year of publication, illustrating the increasing
relevance of the topic. Our survey primarily targets full research papers, i.e., more than six pages,
from top-ranked conferences and journals.1 In addition, we include other publications, e.g., in
workshop proceedings, papers on arXiv, and technical reports, as well as publications at lower-
ranked venues, if and only if they are recent (less than two years), have had a significant impact
(more than ten citations), or provide a very strong match with the topic of this survey. We use three
different platforms to search for papers: Google Scholar2, the ACM Digital Library3, and DBLP4. To
find an initial set of papers, we search with queries "code search" and "code retrieval". Afterwards,
we iteratively refined the set of considered papers by following citations, both backward and
forward, until reaching a fixed point.

There are several research fields related to code search that are out of the scope of this article. In
particular, we do not discuss in detail work on general software repository mining, e.g., to extract
patterns or programming rules [49], searching for entire applications, e.g., in an app store [34, 81],
and query-based synthesis of new code examples [38]. Moreover, we do not cover in detail work
on code clone detection [106] and code completion [14, 104], as those are related but different
problems. Code clone detection aims at finding pieces of code that are semantically, and perhaps
even syntactically, equivalent to each other, whereas code search aims at finding code that offers
more details than a given query. Code completion can be seen as a restricted variant of code search,
where the code a developer has already written serves as a query to find the next few tokens or
even lines to insert. An important difference is that code search tries to retrieve existing code as-is,
whereas code completion synthesizes potentially new code fragments.
1Specifically, venues ranked A* or A in the CORE ranking: http://portal.core.edu.au
2https://scholar.google.com/
3https://dl.acm.org/
4dblp.uni-trier.de/
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Figure 2 outlines the components a typical code search engine is built from, and at the same time,
gives an overview of the topics covered in this article. Most code search engines have an offline
part, which indexes a code corpus or trains a machine learning model on a code corpus, and an
online part, which takes a user-provided query and retrieves code examples that match the query.

• Section 2 presents different kinds of queries accepted by code search engines, including
natural language, code snippets, formal specifications, test cases, and queries written in
specifically designed querying languages.

• Section 3 describes how code search engines preprocess and expand a given query, e.g., by
generalizing terms in a natural language query or by lifting a given code snippet to a richer
representation.

• Section 4 presents the core component of a code search engine, which indexes code examples
or trains a machine learning model, and then retrieves examples that match a query. We
discuss and compare several approaches based on how they represent the code and what
kind of retrieval technique they use.

• Section 5 presents different techniques for ranking and pruning search results before present-
ing them to the user, e.g., based on similarity scores between code examples and the query,
or based on clustering similar search results.

• Section 6 discusses empirical studies of developers and how they interact with code search
engines, which connects the research described in the other sections to adoption in practice.

• Section 7 outlines several open challenges and research directions for future work.
Prior work surveys code search techniques from different perspectives than this article. Garcia

et al. [30] summarize code search-related tools presented until 2006, with a focus on tools aimed at
software reuse. Another survey [23] is about techniques for locating where in a project a particular
feature or functionality is implemented. While being a problem related to code search, feature
location focuses on searching through a single software project, instead of large code corpora, and
on the specific use case of locating a feature, instead of the wider range of use cases covered by
code search. A short paper by Khalifa [52] discusses existing techniques for code search, focusing
on information retrieval-based and deep learning-based approaches, but it covers only five papers.
Finally, another survey of code search techniques [68] focuses on general publication trends,
application scenarios where code search is used, and how search engines are evaluated. In contrast,
this article focuses more on the technical core of code search engines, including different querying
languages, pre-processing of queries, ranking and pruning of results, and also empirical studies of
code search in practice.

2 QUERIES FOR SEARCHING CODE
The starting point of every search is a query. We define a query as an explicit expression of the
intent of the user of a code search engine. This intent can be expressed in various ways, and
different code search engines support different kinds of queries. The designers of a code search
engine typically aim at several goal when deciding what kinds of queries to support:

• Ease. A query should be easy to formulate, enabling users to use the code search engine
without extensive training. If formulating an effective query is too difficult, users may get
discouraged from using the code search engine.

• Expressiveness. Users should be able to formulate whatever intent they have when searching
for code. If a user is unable to express a particular intent, the search engine cannot find the
desired results.

• Precision. The queries should allow specifying the intent as unambiguously as possible. If the
queries are imprecise, the search is likely to yield irrelevant results.
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Fig. 3. Taxonomy of code search queries and number of approaches accepting each kind of query.

These goals are non-trivial to reconcile, and different code search techniques balance this trade-
off in different ways. Figure 3 shows a taxonomy of the kinds of queries supported by existing
approaches. Broadly, we can distinguish between informal queries, formal queries, and combinations
of the two. The numbers associated with the leaf nodes of the taxonomy indicate how many papers
support each kind of query. The figure also shows how well different approaches achieve the
three goals from above. The color of the boxes containing “Ease”, “Precision”, and “Expressiveness”
indicate the support for these goals, where green means strong support, yellow means medium
support, and red means little support. The remainder of this section discussed the different kinds of
queries in more detail, following the structure lined out in the taxonomy.

2.1 Free-FormQueries
Free-form queries are an informal way of specifying the intent of a code search. Such a query may
describe in natural language the functionality of the searched code, e.g., “read file line by line”.
Free-form queries may also contain programming language elements, e.g., when searching for
identifier names of a specific API, such as “FileReader close”.

Free-form queries are the most commonly used kind of query in the approaches we survey [3, 8,
16–18, 20, 22, 24, 25, 35, 36, 40, 41, 65–67, 69–72, 75, 78, 82, 83, 89, 90, 100, 102, 107, 110, 112, 117,
123, 127, 129, 130, 133, 135, 137] They are attractive as users can easily formulate a query, similar to
using a general-purpose web search engine, with a high level of expressiveness. On the downside,
free-form queries risk being imprecise. One reason is that natural language terms are ambiguous.
For example, the term “float” may refer to either a data type or to a verb. Another reason is that the
vocabulary in a query may not match the vocabulary used in a code base. For example, a search
term “array” may refer to a data structure that syntactically occurs as two square brackets in Java
or Python [127].

Because free-form queries are extremely versatile, different code search engines compare them
against different kinds of data. One set of approaches compares free-form queries against natural
language text associated with code, e.g., API documentation [17], commit messages [18], or words
in the a project’s metadata [82]. Another set of approaches compares queries against the source
code, e.g., by matching the query against signatures of fields and methods [40, 41] or against all
identifiers in the code [72, 78, 112].
The informal nature of free-form queries may make it difficult to accurately match a query

against a code snippet, e.g., because of a vocabulary mismatch between the two. For example,
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plain English queries, such as “match regular expression” or “read text file” [100], may not match
the terms used in the corresponding API methods. A popular way to mitigate this mismatch is
to project natural language words and source code identifiers into a common vector space [89]
via learned word embeddings, such as Word2Vec [84]. Another way to address the limitations of
free-form queries is to preprocess and expand queries, which we discuss further in Section 3.
To avoid the ambiguity of free-form queries and because source code is anyway written in a formal
language, many code search engines support some kind of formal queries, which we discuss in the
following. The commonality of these queries is that they are written in a language with a formally
specified syntax, and sometimes also formally defined semantics.

Summary: Free-form queries are easy to type and highly expressive, but they can be ambiguous
and less precise than other, more formal kinds of queries.

2.2 Queries Based on Existing Programming Languages
As a first kind of formal query, we start by discussing queries based on existing programming
languages. A query here is a snippet of code, possibly using some additional syntax not available
in the underlying programming language. Because developers already know the programming
language they are using, such queries are easy to formulate. The expressiveness and precision of
code queries varies depending on the intent of the user and the specific search engine.

Queries based on existing programming languages roughly fall into three categories:
(1) Plain code. The most simple kind of code query are snippets of code as defined by the syntax

of the underlying programming language [9, 29, 54, 60, 61, 74, 80, 88, 125, 138, 139]. For
example, the following query provides a partial implementation, for which the user seeks
ways to extend it [9]:
try {

File file = File.createTempFile ("foo", "bar");

} catch (IOException e) { }

(2) Code with holes. Instead of letting the search engine figure out where to extend a given code
snippet, some search engines support queries that explicitly define one or more holes in the
given code [85, 87]. For example, this query specifies that the user looks for how to complete
the body of the given method [87]:
public void actionClose(JButton a, JFrame f) {

__CODE_SEARCH__;

}

(3) Code with pattern matching symbols. A very precise way of describing the code to search is a
query in an extension of the underlying programming language that adds patterns matching
symbols. For example, such queries may define where an expression, here denoted with #, or
a statement, here denoted with @, is missing [93, 94]:
if (# = #) @;

Such a query provides an abstract template for the code to search, and the search engine tries
to retrieve some or all code snippets that the template can be extended into.

A recurring challenge for search engines that accept queries written in (variants of) existing
programming languages is the problem of parsing incomplete code snippets [54, 85, 132]. An
off-the-shelf grammar of the programming language may not be able to parse a query because the
query does not encompass a complete source code file or because the code is incomplete. One way
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to address this problem [54] is to heuristically fix a given code fragment, e.g., by surrounding it
with additional code.

A popular kind of application of search engines that accept partial code snippets is as a source
code recommendation tool. To ensure that the recommended code matches the current context
a developer is working in, e.g., the current file and project, some approaches consider the code
around the actual query as context available to the search engine. For example, Holmes and
Murphy [42] and Brandt et al. [11] propose to integrate code search directly into the IDE. Other
approaches [87, 125, 138] spontaneously search and display example code snippets while the
developer is editing a program. The underlying idea of these approaches is that the user should
not spend time on formulating the query, but simply uses the already typed code. Finally, general
code completion systems also predict code based on the existing code context while a developer is
writing code. For example, GitHub’s Copilot5 suggests multiple lines of code using a large-scale
generative neural language model [19]. In contrast to code search, code completion synthesizes
suitable code, regardless of whether exactly this code has already been written anywhere, whereas
code search retrieves existing code as-is.
Instead of queries in a high-level programming language, some code search engines accept

binary code as a query. For example, an approach by David and Yahav [21] accepts a function
in its compiled, binary form as a query and then searches for similar functions in a corpus of
binaries. Another approach accepts an entire binary as the query, trying to find other binaries that
may be compiled from the same or similar source code [53]. Binary-level code search has several
applications in security, e.g., to check for occurrences of known vulnerable code, and in copyright
enforcement, e.g., to find code copied without permission.

Summary: Program language queries are easy to type because users do not have to learn a
new language, but the expressiveness and precision of code queries varies depending on the
intent of the user and the specific search engine.

2.3 CustomQuerying Languages
A common alternative to queries based on an existing programming programming language are
custom querying languages. They provide a high degree of expressiveness and precision, at the
expense of reduced ease of use, because users need to learn the querying language.

2.3.1 Logic-basedQuerying Languages. The most prevalent kind of custom querying languages
is first-order logic predicates that describe properties of the code to search. For example, Janzen
and Volder [47] extend the logic programming language TyRuBa6 to support queries such as the
following, which searches for a package with a class called “HelloWorld”

package (?P, class , ?C), class(?C, name , HelloWorld)

In a similar vein, Hajiyev et al. [39] describe a code querying technique based on Datalog queries.
Datalog is a logic-based language that, given a set of elements and relationships between the
elements, answers queries. The approach considers program elements, e.g., classes and methods,
and several relationships between them, e.g., the fact that a class inherits from another class, or that
a class has a method. A user can query a code base by formulating logic-based queries over these
elements and relationships, such as asking for all methods in a class called “A”, where “A” inherits

5https://copilot.github.com/
6http://tyruba.sourceforge.net/

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://copilot.github.com/
http://tyruba.sourceforge.net/


1:8 Luca Di Grazia and Michael Pradel

from a class called “B”. Other approaches support logical queries over identifiers and structural
relationships between them [115, 128, 131].
Several languages allow for predicates beyond describing program elements and their relation-

ships. One example is to also support meta-level properties, such as how many imports a file has.
For example, the query language by Martie et al. [77] allows for queries such as:
import count > 5 AND extends class FooBar

The Alice search engine [119] supports a kind of semantic predicates, e.g., to search for code that
calls the readNextFilemethod in a loop and handles an exception of a type FileNotFoundException.

2.3.2 Significant Extensions of Existing Programming Languages. Instead of logic-based querying
languages, several search engines accept queries in custom languages that significantly extend
an existing programming language. Similar to the kinds of queries discussed in Section 2.2, such
queries contain fragments of an existing programming language. One such language is by Inoue
et al. [46] who support different kinds of wildcard tokens that match any single token, any token
sequence, or any token sequence discarding paired brackets, respectively. In addition, their queries
may use popular regular expression operators for choice, repetition, and grouping to enhance the
expressiveness. For example, the following query will search for nested if-else clauses:
$( if $$ else $) $+

Another significant extension of an existing programming language is the "semantic patch
language" of Coccinelle [56]. It allows for describing a patch, as produced by the popular diff tool,
augmented with metavariables that match a specific piece of code and with a wildcard operator. A
query hence describes a set of rules that the old and the new code must match, which then used to
search for specific code changes in the version history of a project [57].

2.3.3 Other Custom Languages. A custom querying language by Premtoon et al. [99] describes
code in a way that can be mapped to a program expression graph, which describes computations
via operator nodes and dataflow edges [126]. In contrast to the above approaches, their queries
are not specific to a single programming language, but can be used to search through projects in
multiple languages.

Summary: Custom querying language queries can offer high expressiveness and precision,
but are (at least initially) less easy to type because users have to learn the custom language
first.

2.4 Input-Output Examples asQueries
All kinds of queries discussed so far focus on the source code itself, but neglect an important
property of code that distinguishes it from other kinds of data supported by search engines, such as
text: executability. To exploit this property, some search engines support queries that are behavioral
specifications and that characterize examples of the code behavior. Such queries typically come in
the form of one or more input-output examples of the code to search.

The pioneering work by Podgurski and Pierce [96] is the first to propose input-output examples
as queries, and other approaches adopt and improve this idea [48, 105, 120–122]. For example, these
search engines enable users to search for code that given the input “susie@mail.com” produces
“susie” [120]. Beyond supporting developers who search for specific kinds of code, another applica-
tion of input-output-based code search is to find code fragments that can be used in automated
program repair [50].
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An extended form of input-output examples are queries in the form of executable test cases [62,
63]. Adapting the test-driven development paradigm, the basic idea is that a developer first im-
plements test cases for some functionality and then searches for existing code that provides the
desired functionality. Test cases here serve two purposes: First, they define the behavior of the
desired code to be searched. Second, they test the search results for suitability in the local context.

Summary: Using input-output examples as queries allows for precisely specifying the desired
behavior, but providing sufficiently many examples to fully express this behavior may require
some effort.

2.5 Hybrids of Informal and FormalQueries
A few approaches support not only one kind of query, but hybrid queries that combine multiple
of the kinds described above. One example is the work by Reiss [105], which in addition to input-
output examples supports free-form queries. For example, a user may search for a method that
mentions “roman numeral” and produces “XVII” for the input “17”. Another kind of hybrid query
combines free-form, natural language terms with references to program elements [132], e.g., “sort
playerScores in ascending order”, where “playerScores” refers to a variable in the code. Finally,
Martie et al. [76] mix free-form queries and logical queries over code properties. For example, a
query may ask for code that matches the keywords "http servlet", extends a class httpservlet, and
has more than three imports.

3 PREPROCESSING AND EXPANSION OF QUERIES
The query provided by a user may not be the best possible query to obtain the results a user
expects. One reason is that natural language queries suffer from the inherent imprecision of natural
language. Another reason is that the vocabulary used in a query may not match the vocabulary
used in a potential search result. For example, a query about “container” is syntactically different
from “collection”, but both refer to similar concepts. Finally, a user may initially be unsure what
exactly she wants to find, which can cause the initial query to be incomplete.

To address the limitations of user-provided queries, approaches for preprocessing and expanding
queries have been developed. We discuss these approaches by focusing on three dimensions: (i)
the user interface, i.e., if and how a user gets involved in modifying queries, (ii) the information
used to modify queries, i.e., what additional source of knowledge an approach consults, and (iii)
the actual technique used to modify queries. Table 1 summarizes different approaches along these
three dimensions, and we discuss them in detail in the following.

3.1 User Interface ofQuery Preprocessing and Expansion Approaches
Transparent vs. interactive. The majority of code search engines that perform some form of

query preprocessing or expansion do so in a fully transparent way, i.e., the user is not aware of
this part of the approach. For example, Sisman and Kak [118] propose to automatically expand
queries using similar terms from search results, while others transparently expand queries using
dictionaries [65] and synonymous [72]. An exception is the work by Martie et al. [76, 77], where
the user interactively reformulates queries based on keyword recommendations made by the search
engine. Another interactive approach [71] collects relations between words from the source code,
such as that one type name inherits from another, or that a word is part of a compound word, and
then removes irrelevant words using an English dictionary. After this process the user can give a
feedback about the query and iterate the query refinement until satisfied.
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Table 1. Overview of approaches for preprocessing and expansion of queries.
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User interface:
Transparent to user ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Based on (implicit) user feedback ✓ ✓ ✓ ✓

Information used to modify queries:
Initial search results ✓ ✓ ✓ ✓

Similarity of search terms and/or identifiers ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

NL/code dataset (e.g., Stack Overflow) ✓ ✓ ✓ ✓

Recurring code changes ✓

Technique used to modify queries:
Weigh search terms ✓ ✓

Add or replace search terms ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Lift query to richer representation ✓ ✓ ✓

User feedback. To improve the initially given queries, some approaches rely on feedback by the
user. Such feedback can be given explicitly, as in the work by Martie et al. [76, 77], where a user
can up-rate or down-rate particular search results, which is then used to show more or less search
results with similar features. Instead of explicit feedback, Sisman and Kak [118] rely on so-called
pseudo relevance feedback given implicitly through the highest-ranked search results retrieved for
initially given query. The approach then enriches the initial query with search terms drawn from
the initial search results. Another way of using implicit user feedback is by observing what search
results a user clicks on, which may provide valuable information on what the user is searching for.
The Cosoch approach exploits this feedback in a reinforcement learning-based approach [64]. Their
approach tracks across multiple queries which search results a user selects, and tries to maximize
the normalized discounted cumulative gain (NDCG), which measures the quality of a ranked list of
search results.

Summary: User interfaces can help preprocessing queries in a transparent way or using
feedback from users.

3.2 Information Used to ModifyQueries
Initial search results. Effectively modifying a query requires some information in addition to

the query itself. Several approaches use the results returned for the initially provided query for
this purpose [76, 77, 118]. A downside of relying on initial search results to modify queries is that
the search must be performed multiple times before obtaining the final search results, which may
negatively affect efficiency.

Similarity of search terms and/or identifiers. A commonality of several approaches for query
preprocessing and expansion is to compare words or identifiers in a query with those in a potential
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search result through some kind of similarity measure. One approach [118] builds on the observa-
tion that terms in search results that frequently appear close to terms in the query may also be
relevant, and then expands the initial query with those words. Others builds on domain-specific
dictionaries [65] or on synonyms [72] found using WordNet [58] to add or replace query terms
with related terms. A more recent alternative to curated databases of word similarities are learned
word embeddings, e.g., via Word2vec [84], which can help in revising queries [102].

NL/code datasets. A third kind of information used by several approaches to revise queries are
datasets of documents that combine natural language and code. For example, Lv et al. [75] use
API documentation to identify which API a query is likely to refer to, and then expand the query
accordingly. Online discussion forums with programming-related questions and answers, e.g., Stack
Overflow also have been found to help in revising queries [90, 102, 117]. These approaches search
online posts related to a given query, and then extract additional relevant words, software-specific
terms, and API identifiers to augment the query. Since the questions and answers cover various
application domains and are curated based on feedback by thousands of developers, they provide a
valuable dataset to associate natural language words with related programming terms.

Recurring code changes. Motivated by the observation that developers may have to adapt a
retrieved code example, e.g., to use the most recent version of an API, Wu and Yang [133] expand
queries to proactively consider such potential code adaptations. At first, their approach mines
recurring code changes from version histories of open-source projects, which provides information
such as that a code token A is often changed to a code token B. Given a user query, they then
retrieve matching code examples, and if these examples include a frequently changed token, say
A, expand the query with the updated token, say B. With the expanded query, the search engine
hence will retrieve updated versions of the code examples, freeing the developer from adapting the
code manually.

Summary: To automatically modify queries, code search engines most commonly use sim-
ilarities between search terms and identifiers, as well as corpora of natural language and
code.

3.3 Techniques Used to ModifyQueries
Weigh search terms. The perhaps most straightforward way of augmenting a given search query

is to weigh the given search terms. Several code search engines implement this idea [102, 112],
with the goal of giving terms that are most relevant for finding suitable results at a higher weight.
For example, Rahman and Roy [102] estimate the weights of API class names by applying the page
rank algorithm [12] to an API co-occurrence graph.

Add or replace search terms. Another common technique is to add or replace terms in the given
search query, e.g., by adding terms that are related or synonymous to those already in the query. Lv
et al. [75] propose a query refinement technique specifically aimed at APIs. In a two-step approach,
they first identify an API that the query is likely to refer to, and then expand the original query
with identifier names related to this API. For example, for an initial query “how to save an image
in png format”, the approach may identify the API method System.Drawing.Image.Save to be likely
relevant, and hence, adds the fully qualified method name into the search query.

Lift query to richer representation. To ease matching a query against potential search results,
several approaches lift the query into a richer representation. An early example is the SCRUPLE tool
by Paul and Prakash [94]. It transforms the query specified by the user with a pattern parser into
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an extended nondeterministic finite automaton called code pattern automaton. Other approaches
lift queries into a graph representation. For example, Wang et al. [128] take a query formulated
in a custom querying language and then transforms it into a graph representation that expresses
call relations, control flow relations, and data flow relations. As another example, Li et al. [65]
transform a natural language query into an “action relationship graph”, which expresses sequencing,
condition, and callback relationships between parts of the code described in the query. For example,
given a query “add class ’checked’ to element and fade in the element”, their approach would infer
that the two parts combined by “and” are supposed to happen in sequence.

Summary: The most popular techniques to modify queries are using weighing, adding, or
replacing search terms, as well as lifting queries to a richer representation.

4 INDEXING OR TRAINING, FOLLOWED BY RETRIEVAL OF CODE
The perhaps most important component of a code search engine is about retrieving code examples
relevant for a given query. The vast majority of approaches follows a two-step approach inspired
by general information retrieval: At first, they either index the data to search through, e.g., by
representing features of code examples in a numerical vector, or train a model that learns rep-
resentations of the data to search through. Then, they retrieve relevant data items based on the
pre-computed index or the trained model. To simplify the presentation, we refer to the first phase
as “indexing” and mean both indexing in the sense of information retrieval and training a model
on the data to search through.

The primary goal of indexing and retrieval is effectiveness, i.e., the ability to find the “right” code
examples for a query. To effectively identify these code examples, various ways of representing
code and queries to compare them with each other have been proposed. A secondary goal, which
is often at odds with achieving effectiveness, is efficiency. As users typically expect code search
engines to respond within seconds [108], building an index that is fast to query is crucial. Moreover,
as the code corpora to search through are continuously increasing in size, the scalability of both
indexing and retrieval is important as well [4].
We survey the many different approaches to indexing, training and retrieval in code search

engines along four dimensions, as illustrated in Figure 4. Section 4.1 discuss what kind of artifacts a
search engine indexes. Section 4.2 describes different ways of representing the extracted information.
Section 4.3 presents techniques for comparing queries and code examples with each other. Table 2
summarizes the approaches along these first three dimensions. Finally, Section 4.4 discusses different
levels of granularity of the source code retrieved by search engines.

4.1 Artifacts That Get Indexed
When creating an index of code examples to retrieve, code search engines consider different artifacts
related to code.

4.1.1 Source Code and Binary Code. The most obvious, and by far most prevalent, artifact to
index is the source code itself. Many approaches target a high level programming language, such
as Java [5, 9, 22, 29, 39, 42, 61, 89, 119, 135, 138], JavaScript [60, 65], and C [93, 94]. Some search
engines support not only one but multiple languages [16, 44, 110], e.g., Sando [112] (C, C++, and C#),
ccgrep [46] (C, C++, Java, and Python), Aroma [74] (Hack, Java, JavaScript, and Python), DGMS [66]
(Java and Python), and COSAL [80] (Java and Python). Instead of source code, some approaches
focus on compiled code [21, 53], which is useful, e.g., to find functions in binaries that are similar
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/*
 * Interact with server via socket.
 */
serverSocket = new ServerSocket(port);
clientSocket = serverSocket.accept();
out = new PrintWriter(
  clientSocket.getOutputStream(), true);
in = new BufferedReader(new
  InputStreamReader(clientSocket.getInputStream()));

Query:
"Find files in directory"

Match?

Artifacts that get indexed (Section 4.1)

Natural 
language

Source code or 
binary code

Runtime 
behavior

Representing the information for 
indexing and retrieval (Section 4.2)

Individual code 
elements

Sequences of 
code elements

Relations between 
code elements

Techniques to compare query and code (Section 4.3)

Machine 
learning

Feature 
vectors

Database Graph 
matching

Solver-based 
matching

x1 ∧ x2 ∧ x3

Granularity of retrieved code (Section 4.4)

Code 
snippets

Methods Classes Applications
or libraries

Fig. 4. Overview of techniques for indexing and retrieval.

Table 2. Overview of approaches based on information retrieval technique respect to kind of indexed infor-
mation (1-3 rows) and kind of feature extracted (4-6) rows.

IR technique

Feature vectors Machine learning Other

Indexed artifact:
Source code [6, 9, 22, 29, 53, 60, 61,

74, 89, 90, 112, 117, 133,
138]

[44, 110, 118, 119] [21, 39, 42, 46, 65,
77, 93, 94]

Runtime behavior [96] [48, 85, 97, 122]
Natural language [8, 15, 20, 54, 82, 125] [16, 36, 67, 87,

107, 123]
[18, 91]

Representation of indexed code:
Individual code elements [22, 53] [16, 20, 110] [18, 46]
Sequences of code elements [8, 54, 125, 133, 133] [36] [21]
Relationships between code elements [9, 60, 61, 74, 75, 90] [67, 85, 88, 123] [10, 39, 42, 65, 93,

94]

to known vulnerable functions. These approaches first disassemble a given binary and then index
disassembled functions or entire binaries.

4.1.2 Runtime Behavior of Code. Instead of only statically analyzing and indexing code, some
search engines exploit the fact that source code can be executed by analyzing the runtime behavior
of the code to search through. Considering runtime behavior may be useful, e.g., when two snippets
of code have similar source code but nevertheless perform different behavior. The first code search
engine that considers runtime behavior is by Podgurski and Pierce [96]. Their approach expects
the user to provide inputs to the code to find, and then searches for suitable code examples by
sampling the behavior of candidate code examples. Reiss [105] select candidates using keywords
and then they apply different kinds of transformations to have solutions with different behavior.
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To validate the dynamic behavior of the candidates with respect to the requirements given by
the user, they run a set of test suites. Another line of work symbolically executes code to gather
constraints that summarize the runtime behavior [48, 122]. Finally, the COSAL search engine [80]
compares the behavior of code snippets based on an existing technique for clustering code based
on its input-output behavior [79].

4.1.3 Natural Language Information Associated with Code. Beyond the source code and its runtime
behavior, another valuable artifact is natural language information associated with code. For
example, such information comes in the form of comments, API documentation, commit messages,
and discussions in online question-answer forums. Several code search engines leverage this
information, in particular approaches that retrieve code based on natural language queries, e.g.,
after training neural models on pairs of natural language descriptions and source code [16, 123].
One group of approaches leverages regular comments and structured comments that provide

API documentation, e.g., by considering comments as keywords to compare a query against [67] or
by mapping code and natural language into a joint vector space [36, 107]. Another direction is to
consider commit messages in a version control system, based on the assumption that the words
in a commit message describe the source code lines affected by the commit [18]. Finally, online
discussion forums, such as Stack Overflow,7 provide a dataset of pairs of code snippets and natural
language descriptions, which several code search engines use to associate natural language words
and code [15, 20, 90].

Summary: The by far most common kind of artifact that gets indexed are source code and
binary code. However, there also are search engines that index traces of runtime behavior and
natural language information associated with code.

4.2 Representing the Information for Indexing and Retrieval
After discussing what artifacts different approaches extract information from, we now consider how
this information is represented for indexing and retrieval. We identify three groups of approaches,
presented in the following with increasing levels of complexity: representations based on individual
code elements, on sequences of code elements, and on relations between code elements.

4.2.1 Individual Code Elements. The first group of approaches focuses on individual code elements,
e.g., tokens or function calls, ignoring their order and any other kind of relationship they may be
in [18, 46]. To index the code examples, these approaches then represent a code snippet as a set
of code elements. One example is work that represents a code example as a bag of tokens, and a
natural language query as a bag of words [20, 125]. Another approach represents binaries as a set
of tokens extracted from disassembled binaries [53]. Finally, Diamantopoulos et al. [22] represent
API usages as a set of API calls, replacing each method by its type signature. The main benefit
of indexing sets of individual code elements is the conceptual simplicity of the approach, which
facilitates instantiating an idea for a particular target language. On the downside, the order of code
elements and other kinds of relationships may provide useful information for precisely matching a
code example against a query.

4.2.2 Sequences of Code Elements. To preserve ordering information of code elements during the
indexing, several approaches extract sequences of code elements from a given code example. Most
commonly, these sequences are extracted in an Abstract Syntax Tree (AST) based, static analysis
that focuses on particular kinds of nodes. For example, Gu et al. [36] represent API usages by
7https://stackoverflow.com/

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://stackoverflow.com/


Code Search: A Survey of Techniques for Finding Code 1:15

extracting sequences of API calls from an AST. Another example is FaCoY [54], which represents
a code example as a sequence of tokens extracted from an AST, where each token comes with a
token type, e.g., method call or string literal. To represent incomplete code examples, they insert
empty statements to complete the snippet. David and Yahav [21] instead use control flow graphs to
represent information for the binary source code. Sun et al. [123] represents code as a sequence of
low-level instructions, which the approach obtains by compiling and then disassembling the code.
Finally, deep learning-based code search approaches often tokenize source code using a sub-word
tokenizer, such as the WordPiece [134] tokenizer used, e.g., by Salza et al. [110].

4.2.3 Relations between Code Elements. Going beyond individual code elements and sequences
thereof, many approaches extract a richer set of relations between code elements. The most common
approach is to focus on entities, typically code elements, such as classes, methods, and statements,
and relations between them, such as one class inheriting from another class, one method calling
another method, and a method containing a statement [9]. Popular examples of this approach
include CodeQuest [39] and Sourcerer [67], which extract code elements and their relations through
an AST-based analysis. Sourcerer also serves as the basis for other code search approaches, e.g., by
Bajracharya et al. [8] and Lv et al. [75].

Sirres et al. [117] extract structural code entities of Java source files, collecting the relationship
of imports, classes, methods and variables. A more recent example is Aroma [74], which parses
code into a simplified parse tree and then extracts different kinds of features based on the tokens in
the code, parent-child relationships, sibling relationships, and variable usages, focusing. In a similar
vein, Ling et al. [66] represent code as a graph that includes structural parent-child relationships,
next-token relationships, and definition-use information. Li et al. [65] extract from ASTs three
kinds of relationships between code elements: sequencing methods calls, callback between methods
and methods as conditions of if statements. Holmes and Murphy [42] use heuristics to collect
relationships of methods inheritance, methods calls and methods usage. Finally, Paul et al. [93, 94]
use non-deterministic finite automata, called code pattern automata, to represent relationships
between code elements.

Instead of a relatively lightweight static extraction of information to index, some search engines
rely on more sophisticated static analysis. For example, Mishne et al. [85] propose a static type state
analysis that extracts temporal specifications in the form of deterministic finite-state automata that
capture sequences of API method calls. Another example is work by Premtoon et al. [99], which
represent code examples as data flow graphs.

Summary: To index source code examples, code search engines typically represent the code
as sets of individual code elements, sequences of code elements, or as relationships between
code elements.

4.3 Techniques to CompareQueries and Code
After extracting the information from source code, execution behavior, and natural language
information associated with the code, most search engines index the extracted information to then
quickly respond to queries based on the pre-computed index. The following discusses different
approaches for comparing queries and code, which we group into techniques based on feature
vectors computed without machine learning (Section 4.3.1), machine learning-based techniques
(Section 4.3.2), database-based techniques (Section 4.3.3), graph-based matching (Section 4.3.4), and
solver-based matching (Section 4.3.5).
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4.3.1 Indexing and Retrieval Based on Algorithmically Extracted Feature Vectors. Several techniques
are based on feature vectors and distances between these vectors. In this sub-section we discuss
approaches that compute feature vectors algorithmically, i.e., without any machine learning model.
Their general idea is to represent both the code examples and the query as feature vectors, and
to then retrieve code examples with a vector similar to that of the query. Because performing
a pairwise comparison of the query vector with each code vector is inefficient, the approaches
compute an index into the feature space that allows them to efficiently retrieve a ranked list of
vectors similar to a given vector.

There are different ways of mapping information about code examples and queries into feature
vectors. One approach is boolean vectors [109] that express whether some feature, e.g., a particular
type of AST node, are present [74]. Another common approach is to map a set of tokens or words
into a term frequency-inverse document frequency (TF-IDF) vector, which expresses not only
whether a feature is present, but also how important its presence is in comparison with other
features [22, 118, 125, 133].

A popular implementation of feature-based indexing and retrieval is the Lucene library.8 Origi-
nally designed for text search, Lucene is used in various code search engines [6, 8, 53, 54, 77, 97, 117].
It combines the boolean model, which removes candidate vectors that do not provide the required
features, and the vector space model, which computes a distance between the remaining candidate
vectors and the query vector. The feature vectors are based on a custom term-frequency formula.9
Moreover, Nguyen et al. [89] use a revised Revised Vector Space Model (rVSM). The rVSM splits
each token in separate words and computes the weight for each word using TF-IDF.
Instead of building upon an existing indexing and retrieval component, some search engines

implement their own indexing and retrieval technique. For example, Lee et al. [61] use R*trees [10],
which recursively partition the code examples into a tree structure that can then be used to efficiently
find the nearest neighbors of a query. Luan et al. [74] identify those code examples that have the
most overlap with the query vector by representing the feature set as a sparse vector and by then
computing the overlap between queries and code examples via matrix multiplication. Another
approach [9] matches a code query against code examples based on feature vectors for different
AST subtrees of the code examples, pruning the large number of combinations to compare by
considering only subtrees with the same parent node type.

4.3.2 Learning-based Retrieval. Neural software analysis [98] is becoming increasingly popular,
and neural information retrieval [86] offers an attractive alternative to more traditional techniques.
Most work takes an end-to-end neural learning approach, where a model learns to embed both
queries and code examples into a joint vector space. Given this embedding, code search reduces to
finding those code examples that are the nearest neighbors of a given query. We discuss approaches
following this overall pattern in the following, focusing at first on natural language-to-code search
and then on code-to-code search.

Learning-based natural language-to-code search. Gu et al. [36] pioneered with the first neural,
end-to-end, natural language-to-code search engine. Their model embeds the code of methods
using three submodels that apply recurrent neural networks to the name of the method, the API
sequences in the method, and all tokens in the method body, respectively. Likewise, the model
embeds the words in the query using another recurrent neural network. All embedding models are
trained jointly to reduce the distance of matching code-query pairs while keeping unrelated pairs
apart. In a similar way, Sun et al. [123] embed a code example and a natural language description

8https://lucene.apache.org/
9https://lucene.apache.org/core/3_5_0/scoring.html
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into a joint vector space. They improve upon earlier work by translating the code into a natural
language-like representation based on transformation rules. Chen and Zhou [20] use two jointly
trained auto encoders to map code and text into a vector space, respectively. Cambronero et al.
[15] compare different ways to implement neural code search, including unsupervised [107] and
supervised approaches and different neural models [36, 45]. Because a single model may not capture
all aspects of a code example, Du et al. [24] propose an ensemble model that combines three neural
code encoders, which focus on the structure of code, its variables, and its API usages, respectively.

To foster further comparisons, the CodeSearchNet challenge [44] offers a dataset of 2 million pairs
of code and natural language queries, along with several neural baseline models and ElasticSearch.10
Improvements on learning vector representations of code further improve the effectiveness of
learning-based code search. For example, learn from multiple code representations [35], apply
attention-based neural networks [135], or learn from a graph representation of code and queries
via a graph neural network [66].

Learning-based code-to-code search. To find code based on an incomplete code example, several
learning-based approaches have been proposed. One approach expands an incomplete code snippet
using an LSTM-based language model and then searches for similar code snippets via a scalable
clone detection technique [139]. An improved version of the approach [138] uses a library-sensitive
language model for expanding the given code snippet. Another approach for retrieving code given
an incomplete code snippet learns a model that predicts the probability that a complete code
example fits the given snippet [87]. The model is based on various kinds of contextual information,
e.g., the types, API calls, and code comments found around the given code snippet.

Search based on pre-trained models. Recent approaches use large pre-trained language models [27,
37], such as BERT [51], for code search. For example, Salza et al. [110] pre-train a BERT model on
multiple programming languages and then they fine-tune the model using two encoders: one for
natural language queries and another for code snippets. Chai et al. [16] show the value of transfer
learning for code search by pre-training CodeBERT [27] on Java and Python, applying a meta-
learning approach called MAML (Model-Agnostic Meta-Learning) [28] to adapt the neural model
to the target language, and finally fine-tuning the model with a dataset from the target language.
Instead of an end-to-end neural search that maps entire code examples and queries into a joint
vector space, one can also use pre-trained embeddings of individual words and tokens. For example,
Ling et al. [66] use GloVe [95] and Zhou et al. [139] use pre-trained FastText embeddings.11 Sachdev
et al. [107] propose an approach that maps individual code tokens into vectors, then computes a
TFIDF-weighted average of them, and finally uses the resulting vector for a nearest neighbor-based
search in the vector space.

4.3.3 Database-based Indexing and Retrieval. Given the success of databases for storing and re-
trieving information, several code search approaches build upon general-purpose databases. David
et al. [21] describe a code search engine for binaries that stores short execution traces (“tracelets”)
in the NoSQL database MongoDB. Given a function as a query, the approach then retrieves other
functions by querying the database for matching tracelets. Another database-based approach is by
Hajiyev et al. [39], who build upon a relational database. Their approach stores facts extracted from
a program, such as return relationships, method calls, and read and write fields, and then formulates
search queries as database queries. In contrast to the similarity-based retrieval techniques discussed
above, databases retrieve code examples that precisely match a query.

10https://www.elastic.co/elasticsearch/
11https://fasttext.cc
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4.3.4 Graph-based Indexing and Retrieval. Given a graph representation of queries and code,
another common approach is to retrieve code via graph-based matching. Li et al. [65] abstract both
code snippets and a natural language query into graphs that represent different API method calls
and their relationships. Then, they address the retrieval problem as a search for similar graphs. The
Yogo search engine [99] represents a given query code example and all code examples to search
through as dataflow graphs. To match queries with code examples, the approach then applies a set
of rewrite rules to check if the rewritten graphs match.

Instead of matching graphs, another direction is to use a graph representation of code to compute
a similarity score. Mcmillan et al. [82]’s Portfolio technique first computes the pairwise similarity
of a query and a set of functions, and then propagates the similarity score using the spreading
activation algorithm through a pre-computed call graph. In an orthogonal step, the approach also
computes the importance of every function by applying the page rank algorithm to the call graph.
Finally, the two scores are combined to retrieve relevant functions. SCRUPLE [93, 94] uses a finite
automata-based comparison of a code query and code examples. After turning both into a finite
automata, a code pattern automaton interpreter compares two pieces of code and reports a match
if the automaton reaches the final state.

4.3.5 Solver-based Matching. Code search engines that represent the behavior of code in the form
of constraints often use SMT solvers to match queries against code examples [48, 122]. The indexing
phase in this case consists of a static analysis that extracts constraints describing input-output
relationships. Then, the retrieval phase checks with an SMT solver whether the constraints of a
code example satisfy the input-output examples that a user provides as the query. The idea was
first proposed by Stolee et al. [122] and later refined and generalized by Jiang et al. [48].

Summary: The most used approaches for indexing and retrieval are feature vector-based
retrieval and, more recently, deep learning-based models. The first approach needs less data and
represents query and source code both as interpretable feature vectors. The second approach
needs more data for training a model, e.g., to embed both queries and code source into a joint
vector space.

4.4 Granularity of Retrieved Source Code
Different code search engines retrieve code at different levels of granularity. We categorize the
existing approaches into four kinds of granularity. First, many search engines retrieve code snippets,
which may range from a single line of code to multiple consecutive lines that implements a specific
task. Second, other search engines focus on the method-level, i.e., these approaches retrieve entire
methods. Third, users can also search at the class-level, where code search engines return entire
classes. Finally, there also are search engines that operate at the application or library-level, which
we do not cover in full detail here. Table 3 summarizes the approaches and the granularity they use.
The same approach may appear in multiple rows [67, 91] if it supports multiple kinds of granularity.

The design decision of the granularity level to target is very important for a code search engine,
because it affects what a user can search for. For example, snippets of code-level can be useful to
search for code that provides an example of how to use an API [8]. The disadvantage of retrieving
code snippets is that they may be incomplete and thus hard to directly reuse. Searching at the
method-level can be useful for finding full methods that already solve a specific task [97], which a
user may directly reuse. Finally, class-level and application or library-level approaches are useful
to find entire components to reuse. Due to the more coarse-grained granularity, the number of
suitable results may be limited though.
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Table 3. Granularity of source code extracted by code search approaches.

Granularity Approaches

Snippet of code [8, 9, 16–18, 20–22, 29, 36, 42, 54, 54, 65, 67, 71, 74, 74, 85, 87, 90, 91, 93, 94, 99, 107,
110, 117, 120, 123, 127, 132, 137, 139]

Method [44, 48, 62, 67, 72, 75, 82, 88, 89, 91, 96, 97, 105, 119, 122, 133]
Class [67, 91, 105]
Application or library [3, 5, 67, 91]

5 RANKING AND PRUNING OF SEARCH RESULTS
After retrieving code examples that likely match a query, many code search engines rank and prune
the results before showing them to the user. This step is critical to enable users to quickly see the
most relevant matches. In the following, we discuss and compare different ranking (Section 5.1)
and pruning (Section 5.2) approaches.

5.1 Ranking of Search Results
5.1.1 Standard Distance Measures. The by far most common ranking approach is to rely on a
distance measure implicitly provided by the retrieval component of a code search engine (Section 4).
In this approach, the query and each code example are first represented as feature vectors, then a
standard distance measure gives the distance between a query vector and a code vector, and finally
code examples with a smaller distance to the query are ranked higher. For example, this ranking
approach can be implemented using cosine similarity [15, 18, 20, 66, 107, 110, 123, 125], Hamming
distance [8], and Euclidean distance [9, 60, 61].

5.1.2 Custom Ranking Techniques. In addition or as an alternative to standard distance measures,
several search engines rely on custom ranking techniques. David and Yahav [21] propose a variation
of string edit distance to compute the similarity between two sequences of assembly instructions.
The basic idea is to treat each instruction as a letter and to use a table that provides a heuristic
distance between assembly instructions. Another approach [65] ranks code examples using two
scores that are based on the number of tokens that match the given natural language description
and the length of a code snippet, respectively. Sachdev et al. [107] augment the rank obtained via
cosine similarity with custom rules, such as the number of query tokens present in the candidate,
to re-rank the list of results. Another example is from Lu et al. [72]. They compute a representative
set of words for each method and then rank results via a normalized intersection of these words.
COSAL [80] combines multiple custom ranking techniques, which compare two pieces of code
based on their token similarity, structural similarity, and behavioral similarity, respectively.

Some ranking approaches look beyond the given query by also considering the code a developer
is editing while making a query. For example, when building a query vector, Takuya and Masuhara
[125] give more weight to occurrences of tokens near the cursor position, to find programs that
contain similar fragments to the code around the cursor position. In a similar vein, Wightman et al.
[132] uses features of the programmer’s source code to rank and filter prospective snippet results,
including variable types and names, the cursor position within the abstract syntax tree, and code
dependencies. A higher rank here means that a code example uses more of the existing variables
etc., and hence will require fewer modifications.

Some more recent ranking approaches are based on machine learning models. For example, the
Lancer approach [138] fine-tunes a pre-trained BERT model12 to predict whether a code example
12https://github.com/huggingface/pytorch-pretrained-BERT
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Table 4. Overview of empirical studies on code search.
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Topic of study:
Usage of development tools ✓ ✓

Usage of search tools ✓ ✓ ✓ ✓ ✓ ✓

Activities of developers ✓ ✓ ✓ ✓

Methodology:
Questionnaire ✓ ✓ ✓ ✓

Log analysis ✓ ✓ ✓ ✓ ✓ ✓

Observing developers ✓ ✓

Searched code:
Single project ✓ ✓ ✓

Multiple projects within organization ✓ ✓ ✓

Many open-source projects ✓ ✓ ✓

matches the given, incomplete method, and then ranks code examples based on the predicted
score. Ye et al. [137] compute the similarity score using two parameters retrieved with a code
summarization model and a code generation model, based on a dual learning technique.

Summary: To rank search results, engines often use standard algorithms, such as cosine
similarity and Euclidean distance, or they implement custom variations of these techniques.

5.2 Pruning of Search Results
Orthogonal to ranking, several search engines also prune search results that are unlikely to be of
interest to the user. The most straightforward pruning technique is to discard results based on
similarity threshold. For example, some approaches discard all candidates with a similarity lower
than some threshold [17, 48], while others show only the top N results in the output [54, 71, 102].
Another way of pruning search results is to merge similar code examples, assuming that a user
likely wants to see only one of them. For example, Mishne et al. [85] merge similar method call
paths relevant to the query to remove redundancy in the final results. Aroma [74] uses a greedy
algorithm based on parse tree comparison to find and remove redundant code snippets, followed
by re-ranking the pruned search results.

Summary: Filtering by a threshold andmerging similar results are themost popular techniques
for pruning code search results.

6 EMPIRICAL STUDIES OF CODE SEARCH
The wide adoption of code search in practice raises various interesting questions about the way
developers search for code. This section discusses empirical studies related to how, when, and
why developers search for code and what tools they use for this purpose. We include all such
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empirical studies that we are aware of and that fit the selection criteria given in Section 1. We start
by describing the experimental setups used in these studies (Section 6.1) and then present some of
their main results (Section 6.2). Table 4 gives an overview of the discussed studies, including the
topics they address, the methodologies they use, and the amount of code searched through by the
studied developers.

6.1 Setups of Empirical Studies
While practically all empirical studies address the broad questions of how, when, and why develop-
ers search for code, they use different setups and methodologies to address this question. Early
studies [55, 116] are mostly about what activities developers spend their time on and what tools they
use, including tools used for code search. In contrast, more recent studies [7, 92, 101, 108, 113, 114]
focus specifically on code search tools and what activities they are used for.
We see three kinds of methodologies, and sometimes combinations of them: questionnaires

answered by developers [55, 113, 116], analyses of logs of search engines [7, 92, 101, 108, 114, 116],
and observing developers, e.g., by shadowing them [116] or by recording their screens [55]. The first
two kinds of studies are typically based on data gathered from tens [55, 113, 114] to hundreds [108]
of developers. In contrast, log analysis often covers much larger datasets, ranging between tens of
thousands [92] and ten million [7] logged activities.

The studies also vary by the amount of code that is searched through by the studied developers.
Reflecting the general trends in code search engines, early studies are about searching through a
single project [55, 113, 116], whereas later studies are about searching through multiple projects,
either within a larger organization [92, 108] or the open-source ecosystem [7, 101, 114].

6.2 Results of Studies and their Implications
A recurring finding in studies is that code search is among the most common activities developers
spend their time on. Early studies report that grep, find, and its variants are used on a regular
basis [113, 116]. For example, measurements of tool invocations by Singer et al. [116] shows that
grep and its variants are the second-most frequently used developer tools, right after the compiler.
The observational study by Ko et al. [55] also reports code search to be a common activity. However,
their definition of “searching for code” only partially matches ours, because we assume that there is
an explicitly formulated query, whereas they also mean reading code to find a specific code location.
A study at Google based on a specialized code search engine shows that the average developer is
involved in five search sessions per day, with a total of twelve daily queries [108]. Overall, these
findings highlight the importance of code search in software development, motivating researchers
and practitioners to work on code search techniques.
Several studies investigate the goals that developers have when searching for code. The three

most commonly reported goals are finding example code to reuse, e.g., when trying to understanding
how to use an API (between 15% [113] and 34% [108] of all searches), program understanding
(between 14% [113] and 29% [108] of all searches), and understanding and fixing a bug (between
10% [108] and 20% [113] of all searches). Beyond these three goals, a long tail of other goals is
reported, such as understanding the impact of a planned code change, finding locations relevant for
a code clean-up, understanding the coding style used within an organization, and identifying the
person responsible for a particular piece of code. A perhaps surprising finding is that developers also
often use code search as a quick way to navigate through code they are already familiar with [108].

Being a central element of every search, queries and their properties have received some attention
in studies. A study of the Koders code search engine finds most queries to be short, with 79% of
users providing only a single search term [7]. In contrast, other studies report longer queries, e.g.,
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an average of 4.2 terms per query in a study across five search engines [114], and of 4.7 terms for
code-related queries given to Google’s general-purpose search engine [101]. Beyond the size of
queries, several studies investigate what terms are used in queries. Bajracharya and Lopes [7] find
that both code queries and natural language queries are common. Comparing code-related queries
with general-purpose web search queries, Rahman et al. [101] find that code queries use a smaller
vocabulary. Another interesting finding related to queries is that they are frequently reformulated
within a search session [7, 108, 114], even more often than general web search queries [101].

Finally, some studies analyze and compare how effective code search engines are at providing
useful search results. One study reports that between 25% and 60% of all queries are effective,
depending on the kind of query, where “effective” means that the search results cause the user to
download a relevant piece of code [7]. Another study compares specialized code search engines with
general-purpose web search engines. It finds that the former are more effective when searching for
entire subsystems, e.g., a library to use, whereas the latter are more effective for finding individual
blocks of code [114]. The same study also reports that it is easier to find reference examples than
components that are reusable as-is.

Summary: Empirical studies of developers show that they commonly perform code search to
reach various goals, including code understanding, finding code to reuse, and quickly navigating
to code the developer already knows.

7 OPEN CHALLENGES AND RESEARCH DIRECTIONS
7.1 Support for Additional Usage Scenarios
Each code search engine focuses on one or more usage scenarios, such as finding examples of how
to use a specific API or finding again some code that a developer has previously worked on. In
addition to the currently supported usage scenarios, we envision future work to support other
search-related developer tasks. For example, developers may want to search not only through
a static snapshot of code, but also search for specific kinds of changes in the version histories
of projects. Searching for changes could help developers, e.g., to understand how a particular
API usage typically evolves, to find examples of code changes similar to a change a developer is
currently working on, or to find code changes that have introduced bugs. Lawall et al. [57] and
Di Grazia et al. [33] propose promising first steps into this direction. Another example of a currently
unsupported usage scenario is cross-language search. In this scenario, a user formulates a code
query in one programming language to find related code written in another programming language.
Such cross-language search could help developers transfer their knowledge across languages, e.g.,
when a developer knows how to implement a particular functionality in one but not in another
language.

7.2 Cross-Fertilization with Code Completion and Clone Detection
Code search relates to other problems that have received significant attention by researchers
and that offer opportunities for cross-fertilization. One such problem is code completion, i.e., the
problem of suggesting suitable code snippets while the developer is writing code in an integrated
development environment (IDE). Recent large-scale language models used for code completion
offer a functionality similar to code search. For example, a typical usage scenario of GitHub’s
Copilot tool13 and the underlying Codex model [19] takes a short natural language description of a
desired functionality and maps it to a code snippet offering that functionality. This usage scenario
13https://github.com/features/copilot
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is closely related to code search engines that receive free-form queries (Section 2.1). It remains
an open challenge to apply successful techniques from code search in code completion, and vice
versa. Another problem that is strongly related to code search is clone detection [106]. Similar to
code search engines that accept programming language queries (Section 2.2), clone detectors try to
find code that is similar to a given code example. A key difference is that clone detection tries to
find multiple code examples that implement the same functionality (possibly with syntactic and
semantic differences that do not affect the overall behavior), whereas code search tries to retrieve
code that offers more functionality than the given query. Despite these different goals, there is
potential for cross-fertilization of the two related fields, e.g., by adapting effective representations
of code (Section 4) or mechanisms for pruning search results (Section 5.2).

7.3 Learning-Based Code Search
Given the tremendous progress in machine learning, adopting the newest models to code search is
likely to offer new opportunities to code search. In particular, we identify three open challenges.
First, future work could benefit from the increasingly effective code representation models proposed
in the neural software analysis field [98] to compute a vector representation of code and of queries,
which can then be used to identify code examples similar to a given query. Some instances of this
idea have already been presented [36], but as code representation models keep increasing, adopting
new models is likely to also improve code search. Second, future work could design models that not
only retrieve code, but also generalizing examples seen during training into new code that fits a
query. Open challenges here include to formulate code search as a zero-shot learning problem [13]
and to adapt models that combine question answering with retrieval [59].

7.4 Deployment and Adoption in Practice
Code search is an area of strong interest by academic researchers, tool builders in industry, and
practitioners. Despite the already impressive use of code search by developers, we see several open
challenges related to its deployment and adoption in practice. On the one hand, there are challenges
faced by people who are running and maintaining a code search engine. For example, the problem
of how to incrementally re-index a code corpus when the code is evolving has not yet received
significant attention by researchers. A naive approach is to continuously re-index the entire corpus,
which is likely to unnecessarily repeat significant computational effort.

On the other hand, there are challenges faced by users of code search engines. While various
techniques have been proposed for the core components of code search, its user interface is receiving
less attention, with some noteworthy exceptions, such as some of the query expansion techniques
discussed in Section 3. An interesting line of future work could be to automatically formulate
clarification questions, e.g., in natural language, which could allow a user to prune the search
space with a single click. Another promising direction is to support users in defining code queries
(Section 2) by adding automatic code completion features known from IDEs into the interface of a
search engine. Finally, future work could design “query-less” search engines that suggest suitable
code snippets while a developer is writing code, without the need to explicitly formulate a query.
First steps toward that goal have been taken, e.g., by Brandt et al. [11] and Takuya and Masuhara
[125].

7.5 Common Datasets and Benchmarks
An effective way to foster further progress in the research field is to offer reusable datasets for
evaluating and comparing code search engines. Ideally, such a dataset should be realistic, large-scale,
and cover multiple programming languages. Several benchmark datasets have been proposed and
are use by parts of the existing work. One kind of benchmarks consists of groups of semantically
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equivalent implementations, e.g. BigCloneBench [124], Google Code Jam14, and AtCoder15. Such
benchmarks are particularly useful to evaluate code-to-code search engines (Section 2.2), as one
implementation in a group can be used as a query, while the other implementations are expected
to show up among the results. Benchmarks that come with executable test cases, e.g., those derived
from coding competitions, are also useful to evaluate approaches based on dynamic analysis
(Section 4.1.2).

Another kind of benchmarks offers pairs of natural language queries and code. For example,
the CodeSearchNet challenge offers such a dataset, which has been automatically gathered and
covers Go, Java, JavaScript, PHP, Python, and Ruby code [44]. In a similar vein, CodeXGLUE offers
query-code pairs for Python and Java [73]. The Search4Code dataset provides code-related queries
extracted from Bing search queries via a weakly supervised discriminative model [103]. Instead of
relying on automated extraction of datasets, CoSQA is a benchmark of pairs of natural language
queries and code examples that have been manually annotated [43].
We anticipate future work to build even more than today upon these datasets, either as a

benchmark to evaluate a novel code search engine, or as a training dataset to learn from. There also
are opportunities for creating datasets and benchmarks that go beyond those available today. For
example, the community would benefit from a dataset that not only includes queries and search
results, but also information on how developers act on search results, e.g., by selecting lower-ranked
results or by copying and adapting code examples. An interesting challenge for benchmarks used
to evaluate learning-based code search is how to ensure that a model does not see the benchmark
during learning. As large-scale, pre-trained models [19, 27, 37], which often are trained on a large
fraction of all publicly available source code, are becoming increasingly popular, the chances that a
publicly available benchmark is coincidentally used during training increases.

8 CONCLUDING REMARKS
This article provides a comprehensive overview of 30 years of research on code search. Given the
huge amounts of existing code, searching for specific code examples is a common activity during
software development. To support developers during this activity, various techniques for finding
relevant code have been proposed, with an increase of interest during recent years. We discuss what
kinds of queries code search engines support, and give an overview of the main components used
to retrieve suitable code examples. In particular, the article discusses techniques to pre-process and
expand queries, approaches toward indexing and retrieving code, and ways of pruning and ranking
search results. Our article enables readers to obtain an overview of the field, or to fill in gaps of
their knowledge of the state-of-the-art. Based on our survey of past work, we conclude that code
search has evolved into a mature research field, with solid results that have already made an impact
on real-world software development. Despite all advances, many open challenges remain to be
addressed in the future, and we hope our article will provide a useful starting point for addressing
them.
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