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Abstract—Generation of thorough test oracles is an open prob-
lem. Popular test case generators, like EvoSuite and Randoop,
rely on implicit, rule-based, and regression oracles that miss
failures that depend on the semantics of the program under test.
Formal specifications can yield test oracles but are expensive
to create. Large Language Models (LLMs) have the potential
to overcome these limitations. The few studies of using LLMs to
generate test oracles use modest-sized public benchmarks, such as
Defects4J, that are likely to be included in the LLM training data,
which threatens the validity of the results. This paper presents
an empirical study of the effectiveness of LLMs in generating
test oracles. Our experiments use 13,866 test oracles, from 135
Java projects, that were created after the LLMs training cut-
off dates. Thus, our dataset is unbiased. In our experiments,
LLMs generated oracles with average mutation score of 43% —
similar to the 45% score of human-designed test oracles. Our
results also indicate that the test prefix and the methods called
in the program under test provide sufficient information to
generate good oracles, while additional code context does not
bring relevant benefits. These findings provide actionable insights
into using LLMs for automatic testing and highlight their current
limitations in generating complex oracles.

Index Terms—Software Testing, AI for Software Engineering,
Oracle Generation

I. INTRODUCTION

A test case consists of an input and an oracle [1]. An oracle
is a predicate, such as an assertion, that determines whether
the test case passed or failed [2]. Writing and maintaining test
oracles is demanding and error-prone [3]. Manually writing
test oracles for automatically generated test cases is infeasible,
and test oracles are the main bottleneck for automatic test
generation [4].

Popular test case generators, like EvoSuite [5] and Ran-
doop [6], rely on weak implicit oracles and on regression or-
acles that suffer from false positives. One promising approach
to automatically generating test oracles is via natural language
processing (NLP), starting from natural language documenta-
tion of the code under test [7]–[9]. However, these NLP-based
approaches do not generalize to poorly commented code [7].

Large Language Models (LLMs) are trained on massive
corpora of both code and documentation [10], [11]. LLMs can

synthesize semantically meaningful assertions by generalizing
from context, even for poorly commented code [12]. LLMs
can generate both assertion oracles and test oracles [13], [14].
Assertion oracles, or axiomatic oracles [15], are valid for all
inputs [16]–[20]. They may be written in the unit under test
or in the test case [21]. Test oracles, or concrete oracles [21],
[22], are assertions in the test case that are specific to that test
input [23]–[25].

Previous work evaluates LLMs on modest-sized public
datasets [17], such as Defects4J [26]. This well-known bench-
mark is likely to have been included in LLM training data;
such data leakage may inflate performance estimates [27]–
[29]. A recent survey [30] confirms the absence of large-scale
evaluation to assess the effectiveness of LLMs in generating
assertions for test cases added after the LLM’s training cut-
off. This highlights a critical gap in understanding the true
generalization ability of LLMs for generating oracles [31].

A. Methodology

This paper fills the gap with a large-scale empirical study of
concrete test oracles generated by LLMs on a dataset designed
to avoid leakage from the training set. We extracted 13,866
oracles from 135 open-source Java projects. All of these test
cases were created after 2024-09-01, ensuring that the test
code was not in the models’ training data. We evaluated
10 LLMs from 3 families (llama, phi, and qwen), including
general-purpose, code-specific, and reasoning-enhanced vari-
ants, with 4 different prompt configurations. Our experiments
generated 610,104 oracles: 13,866 oracles per LLM-and-
prompt pair.

We evaluated the LLM-generated oracles in two ways: by
comparing them to the original programmer-written oracles (a
proxy for correctness) and by computing their contribution to
mutation score (a proxy for error detection).

B. Results

Our experiments demonstrate that LLMs can generate a
large number of useful test cases. Figure 8 indicates that



LLM-generated and programmer-written oracles have similar
mutation scores: 43% vs. 45%.

As in previous experiments, larger LLMs perform better.
However, in our study the training specialization and the model
family do not matter. In contradiction to the common expec-
tation, for this coding task general-purpose LLMs performed
as well as code-focused models.

The most surprising result of the empirical study is that
adding code context information about the focal and test
classes does not improve the performance over prompting the
LLM with the test prefix and the called methods only. The
empirical study also indicates that the LLMs perform similarly
for different types of oracles.

C. Contributions

This paper makes the following contributions:
• A benchmark of 13,866 oracles and a methodology to

build new ones. These test cases postdate the LLM
training cut-off dates, enabling unbiased evaluation of test
oracle generation.

• An empirical evaluation of 10 LLMs from 3 families
(llama, phi, and qwen) across different LLM sizes,
prompt strategies, and assertion types (that is, which
assert* method performs the check), including an au-
tomated mutation analysis.

• Insights for researchers and practitioners into the effec-
tiveness and limitations of LLM-generated assertions.

The paper is organized as follows. Section II summarizes
our implementation, and section III explains methodology:
how we collected the dataset and ran the mutation analy-
sis. Section IV presents the experimental results. Section V
discusses our findings and implications for researchers and
practitioners. Section VI underlines the limitations and threats
to validity. Section VII overviews related work.

II. IMPLEMENTATION AND DATA AVAILABILITY

We implemented our methodology in Java and Python,
using open-source libraries (like JavaParser [32], tree-

sitter [33], and PyDriller [34]), interfacing with the Ollama
[35] and vLLM [36] libraries. The infrastructure is LLM-
independent, so the study can be replicated using different
LLMs.

We provide a replication package to reproduce our results:
https://github.com/darthdaver/llm-prompts-empirical-study.

III. METHODOLOGY

Figure 1 shows an overview of our methodology, which is
centered around a dataset of 13,866 Test Oracles that we mined
from GitHub repositories (Section III-A) and that we query
with 4 Prompts (section III-B) to evaluate a set of LLMs (sec-
tion III-C) with metrics and mutation analysis (section III-D).
Figure 2 summarizes the numbers and configurations of our
empirical study.

A. Dataset

We built an unbiased dataset of test cases by selecting
candidate repositories, then extracting recent test cases.

Algorithm 1 Extracting test cases created after a given date.

Input: repository r, starting date since
Output: test cases Tnew created after since

1: commits ← PYDRILLER(r, since) ▷ date-ordered
2: Tnew ← {} ▷ recent tests; the output of this procedure
3: for c ∈ commits (main branch) do
4: for f ∈ c.modified files do
5: if ISJAVATESTCLASS(f) then
6: codebefore ← source code before(c, f)
7: codeafter ← source code after(c, f)
8: Tbefore ← GETTESTMETHODS(codebefore)
9: Tafter ← GETTESTMETHODS(codeafter )

10: Tadd ← Tafter \ Tbefore

11: Tdel ← Tbefore \ Tafter

12: Tmod ← EXTRACTTESTDIFF(Tafter , Tbefore)
13: ▷ Tadd , Tmod , and Tdel are disjoint
14: Tnew ←(Tnew ∪ Tadd ∪ Tmod) \ Tdel

15: return Tnew

16:
17: procedure GETTESTMETHODS(code)
18: if code = None then return ∅
19: tree ← TREESITTERPARSE(code)
20: return {m ∈ tree . m is a test method}
21:
22: procedure EXTRACTTESTDIFF(Tafter , Tbefore )
23: ▷ Extracts the test cases added after the since date

and whose body has been modified in the last commit.
24: Tmod ← ∅
25: for all ta ∈ Tafter do
26: if ta added after since then
27: tb ← find(Tbefore , (t)→ {t .sig = ta .sig})
28: if tb ̸= None then
29: if ta.body ̸= tb.body then
30: Tmod ← Tmod ∪ {ta}
31: return Tmod

1) Selecting candidate repositories: We selected public,
non-fork repositories from GitHub, using SEART GitHub
Search [37] with the following filters:

(i) at least 100 commits,
(ii) at least 50 issues,

(iii) at least 10 distinct contributors,
(iv) at least 10 stars,
(v) at least 1 commit between 2024-09-01 and 2025-05-05.

This yielded 4,517 candidate repositories. To simplify the
mutation analysis of section III-D, we retained the repositories
with a single pom.xml file that successfully compile with
Maven. This resulted in 135 Maven projects. We did not check
whether the test cases pass. Later, we performed mutation
analysis only on a suite of passing test cases.

2) Extracting recent test cases: We built an unbiased repos-
itory of programmer-written test cases by extracting the test
cases introduced in the candidate projects after 2024-09-01,
according to the commit history of the projects.

https://github.com/darthdaver/llm-prompts-empirical-study
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Fig. 1: Overview of our methodology.

Fig. 2: Corpus and configuration of our empirical study.

Candidate repositories 4,517
Repositories that compile with Maven 135
Manually designed test oracles 13,866
Time window of mined commits 2024-09-01 to 2025-05-05

Evaluated LLMs 10
Prompt strategies per oracle 4
Concrete prompts (#oracles × #strategies) 55,464
Total LLM queries (#concrete prompts × #LLMs) 610,104

A test oracle is an assert statement in the test case. The
test prefix of an oracle is the code in the test case up to the
given oracle, including any prior oracles. We obtained a set of
13,866 test oracles with their prefixes, manually added by the
project developers after 2024-09-01.

Algorithm 1 outlines the procedure to find every test that
was created after the start date, and then for each of those
tests we retrieve its final version. For each commit after a
given date in chronological order (lines 3–14), it identifies the
test files that have been modified (line 4), analyzes the source
code of the new and old versions of the test file to extract
the test cases defined in both versions (if the file is added in
the current commit, the set of test cases in the old version is
empty) in lines 6–7 , adds the new test cases to the target set
Tnew , removes from Tnew any test case added in a previous
commit and removed in the current one, and updates the body
of any test case added in a previous commit and modified in
the current one (line 14) based on fully identical definitions.
It returns the test cases collected (line 15).

Algorithm 2 shows how we build a Dataset of oracles
(assert statements) with the corresponding test prefix, the fo-
cal class, and the test class, from the test cases that algorithm 1
extracts from the repositories.

The prefix contains the statements of the test case that

precede the target assertion. The prefix also contains the
assertions that preceded the target assertion, if any. The focal
class is the class that contains the methods that the test case
tests. A test case might call other methods (including methods
from other classes) as well, in the prefix, to build and prepare
objects or set up a state for the call to the method under test.
Our dataset contains unit test cases. In a unit test, the method
under test (the focal method) is typically called immediately
before the assert statement, but it also might be called earlier
or called in the assertion (see fig. 3). Our methodology does
not attempt to determine what the focal method is. Instead,
it takes advantage of the standard unit test convention that
test class MyClassTest tests the methods of source code class
MyClass (see algorithm 2, line 4).

State-of-the-art approaches use the heuristic that the last
method call in the test case is the focal method [17], [23],
[38]. This is a strong assumption that does not always hold.
For example, the test case test12() in fig. 3 tests the method
shift called before the assertEquals statement. The algo-
rithm extracts the definition of the last method called in the
original test case (length) and considers it as the focal method
to train the model to predict the target assertion. However, the
method length only represents a getter used to check the post-
condition of the method shift. Our methodology does not
treat any method call in the test case differently than others;
rather, it collects the definitions of all the constructors and
methods invoked within the test prefix.

A test case can contribute more than one oracle if it contains
more than one assertion. In this case, the number of datapoints
obtained by processing the original test case is equal to |A|.

The final dataset contains test cases with 1 (34.4%), 2
(16.6%), 3 (11.5%), and 4 or more (37.5%) assertions. In the
case of multiple assertions in the same test case, the prefix
of each assertion includes the assertions that occur above in
the test case. The many test cases with single assertions in the
dataset make our study applicable for generating assertions for



Algorithm 2 Building dataset D of oracles.

Input: repository r, test cases T from algorithm 1
Output: dataset D of oracles, where each element is a 5-tuple
⟨tc, prefix , fc, invoked , a⟩, with test class tc, test prefix
prefix , focal class fc, invoked is the methods called in
prefix, and a is the next assertion to predict

1: D ← ∅ ▷ dataset of oracles; the output of this function
2: S ← ∅ ▷ set of ⟨focal class, test class⟩ pairs
3: for fc in SOURCECLASSES(r) do
4: tc name ← fc.name + ’Test’ ▷ test method name
5: tc ← GETTESTCASE(tc name)
6: if tc ̸= None then
7: S ← S ∪ ⟨fc, tc⟩
8: for ⟨fc, tc⟩ ∈ S do
9: for t ∈ tc.tests do

10: t .body ← ENRICHTESTCASE(t .body)
11: A← EXTRACTASSERTIONS(t.body)
12: for a ∈|A| do
13: prefix ← t.body .stmts[0..a] ▷ all statements

(and previous assertions if any), before a
14: for method call mc in t.body do
15: invoked ← mc.decl ∪mc.decl .body

16: D ← D ∪ {⟨tc, prefix , fc, invoked , a⟩}
17: return D
18: procedure ENRICHTESTCASE(body) ▷ Embed bodies

of procedures containing assertions and called within the
test case

19: for method call mc in body do
20: if ISMETHODWITHASSERTIONS(mc) then
21: /* The statements and the assertions of
22: the method are integrated within the test case.
23: The variables are refactored to guarantee
24: consistency. */
25: EMBEDBODY(body ,mc.decl .body)

26: return body

test prefixes without assertions, for instance, for automatically
generated test cases, like EvoSuite test cases without regres-
sion oracles. The many test cases with multiple assertions
in the dataset make our study applicable also for adding
assertions to test cases that already include some assertions,
like manually generated test cases.

B. Prompts

We defined 4 prompts with different information con-
tent [39]:
Prefix-Callees The prompt contains the prefix of the oracle

and the source code of the methods called in the test case.
Prefix-Callees-TestCl The prompt contains the prefix of the

test case, the source code of the methods called in the test
case, and the definitions of fields and methods (Javadoc,
signature, and body) in the test class.

Prefix-Callees-FocalCl The prompt contains the prefix of the
test case, the source code of the methods called in the test

Fig. 3: A test case with one assertion, from the TOGLL
replication package [17].

// Original Test case
public void test12() throws Throwable {

BinarySignal binarySignal0 = new BinarySignal(32767);
BinarySignal binarySignal1 = binarySignal0.shift((int) (byte)0);
assertEquals(32767, binarySignal1.length());

}
// Test prefix
public void test12() throws Throwable {

BinarySignal binarySignal0 = new BinarySignal(32767);
BinarySignal binarySignal1 = binarySignal0.shift((int) (byte)0);

}
// Focal method
public final int length() {

return length;
}
// Target assertion
assertEquals(32767, binarySignal1.length());

Algorithm 3 Building prompts.

Input: oracle dataset D from algorithm 2, and a prompt
specifier pspec that contains two Boolean fields
includeFocalClass and includeTestClass

Output: one prompt for each oracle in the dataset, as speci-
fied in the prompt type

1: procedure BUILDPROMPT(pspec)
2: prompts ← {}
3: for ⟨tc, prefix , fc, , ⟩ ∈ D do
4: p ← d .prefix
5: ims ← tp.invoked
6: for m ∈ ims do
7: p← p ∥ m
8: if pspec.includeFocalClass then
9: ADDCLASSINFO(p, fc)

10: if pspec.includeTestClass then
11: ADDCLASSINFO(p, tc)

12: prompts ← prompts ∪ {p}
13: return prompts

14:
15: procedure ADDCLASSINFO(p, c)
16: for f ∈ c.fields do
17: p← p ∥ f .signature
18: for m ∈ c.methods do
19: p← p ∥ m

case, and the definitions of fields and methods (Javadoc,
signature, and body) in the focal class.

Prefix-Callees-TestCl-FocalCl The prompt contains the pre-
fix of the test case, the source code of the methods called
in the test case, and the definitions of fields and methods
(Javadoc, signature, and body) in both the focal and the
test class.

Algorithm 3 outlines how we automatically build the
prompts. The algorithm generates the prompts according to



a prompt template for all the oracles in an input dataset.
We use the algorithm to generate the 55,464 prompts for our
experiments (4 prompts for each of the 13,866 oracles).

The algorithm extracts the elements required to build the
prompt (prefix, signature, Javadoc and body of the methods
invoked in the test prefix, and fields and methods defined
within the focal class and the test class [40], depending on the
prompt type) and initializes an empty list prompts of prompts
(lines 1–2). The algorithm iterates over all the oracles in the
input dataset D, and generates the prompt specified in the
input template for each of them (lines 3–12) that it adds to the
output set of prompts (line 12). In each iteration, the algorithm
initializes the prompt with the test prefix and the information
about the methods invoked within it (lines 5–7). It adds the
information required for the focal (lines 8–9) and test class
(lines 10–11) with procedure ADDCLASSINFO if indicated
in the prompt type. The configuration file contains the types
of information to be included to progressively compose the
prompt with the signature, the Javadoc and the body of the
methods invoked in the test prefix, and eventually the fields
and the methods defined within the focal class and the test
class (line 1). The procedure iterates over the 13,866 oracles
data points collected in the previous phase, integrating the
pieces of information within the prompt (lines 3–12). The
algorithm enriches the prompt with a clear description of the
task that each model must accomplish and generates as output
a list of 13,866 final prompts (line 13).

We fit as much information as possible in the prompts
while respecting the maximum window context length of the
model, by leveraging an algorithm that implements the E-Wash
approach [41].

We built the 4 prompts for each of the 13,866 oracles in our
dataset, for a total of 55,464 prompts that we used to query the
LLMs to generate a test oracle without any example (zero-shot
learning).

C. Large Language Models

To study how model size and training specialization impact
oracle prediction, we selected 10 different LLMs that use
different training and inference techniques: General, Reason-
ing, Instruct, and Code, and size ranging from 1B to 70B
parameters.

General. General-purpose LLMs are trained predominantly on
web-scale mixed-domain datasets:
– qwen2.5 1.5b, qwen2.5 14b, qwen2.5 32b
– phi4-mini 3.8b, phi4 14b

Reasoning. LLMs with pretraining and instruction-tuning that
explicitly target chain-of-thought and analytical reasoning
tasks.
– phi4-reasoning 14b

Instruct. LLMs fine-tuned with human-based feedback or
datasets specialized in natural-language instructions.
– llama3.3 70b

Algorithm 4 Mutation analysis for generated oracles.

Input: repository r , oracle dataset D from algorithm 2
Output: Mutation score with and without the LLM-generated

assertions
1: green suite ← ϵ
2: for ⟨tc, , , , ⟩ ∈ D do
3: green suite← DUPLICATE(tc)
4: green suite.body ← ϵ
5: for t ∈ tc.tests do
6: green suite.body ← green suite.body ∪ t
7: if PASSINGTESTS(r ,tc) == False then
8: green suite.body ← green suite.body \ t
9: green suite ← green suite ∪ green suite

10: scoreorig ← RUNPIT(r , green suite)
11: for tc ∈ green suite do
12: for t ∈ tc.tests do
13: REMOVEORIGINALASSERTION(t)

14: scorewithout ← RUNPIT(r , green suite)
15: for tc ∈ green suite do
16: for t ∈ tc.tests do
17: ADDGENERATEDASSERTION(t)
18: if PASSINGTESTS(r ,tc) == False then
19: REMOVEGENERATEDASSERTION(t)

20: scoregen ← RUNPIT(r , green suite)
21: for tc ∈ green suite do
22: for t ∈ tc.tests do
23: ADDORIGINALASSERTION(t)
24: if PASSINGTESTS(r ,tc) == False then
25: REMOVEORIGINALASSERTION(t)

26: scoreorig+gen ← RUNPIT(r , green suite)
27: return ⟨scoreorig , scorewithout , scoregen , scoreorig+gen⟩

Code. LLMs trained or fine-tuned on source code datasets;
expected to excel at syntactic and semantic understanding
typical of coding tasks.
– qwen2.5-coder 1.5b, qwen2.5-coder 14b, qwen2.5-

coder 32b
We selected LLMs of the same family with multiple sizes

(e.g. qwen2.5 at 1.5B, 14B, and 32B) to understand the effect
of scale from that of training data. Moreover, by comparing
domain-specialized LLMs (Code and Reasoning) with their
general versions, we evaluate whether the oracle generation
tasks benefit more from scale or from task-aligned pre-training.

D. Mutation Analysis

We compute the mutation score across four different scenar-
ios to evaluate the impact of the generated oracles. We mea-
sure: (i) the mutation score of the original test cases (including
the test oracles written by the developers); (ii) the mutation
score of the test prefixes, by executing the test cases stripped
of all assert statements; (iii) the mutation score with only
the generated oracles, by executing the test cases augmented
with the LLM-generated oracles; and (iv) the mutation score



with both original and generated oracles combined. These
four configurations allow us to isolate the effect of generated
oracles and assess their contribution both independently and
in conjunction with existing ones.

Algorithm 4 outlines the process to compute the mutation
scores for the classes of a repository. The algorithm initializes
the suite of green test classes to an empty set (line 1) and
iterates over the list of test classes in the dataset D of oracle
datapoints to verify that their tests compile and pass, otherwise
it discard them (lines 2–8). The algorithm adds the refined
test classes to the suite (line 9), and computes the mutation
score of the tests containing the original assertions (lines 2–
9). The algorithm removes the original test oracles written by
the developers from the test cases of the test classes in the
suite (lines 11–13) and computes the mutation score of the
tests without oracles (line 14). The algorithm adds the LLM-
generated oracles to the test cases without oracles, only if
the updated test cases compile and pass, (lines 15–19) and
computes the mutation score of the test cases containing only
the generated oracles (line 20). Finally, the algorithm includes
the original oracles to the test cases containing the LLM-
generated oracles (lines 21–25) and computes the mutation
score of the test cases embedding both the original and the
generated oracles (line 26).

IV. RESULTS

In this section we describe our experimental setup and the
results of our empirical study.

A. Research Questions

Our experimental evaluation addresses the following re-
search questions (RQs):
RQ1 Impact of the LLM: Does the choice of LLM affect

the accuracy of the generated oracles? We compare
different LLMs to evaluate the influence of the type and
size of the LLM on the generation process.

RQ2 Impact of the Prompt: Does the choice of prompt affect
the accuracy of the generated oracles? We evaluate
different input information to study the tradeoff between
the amount of information provided with the prompt and
the effectiveness of the LLM.

RQ3 Impact of the Type of Oracle: Are some assertion
methods easier for LLMs to accurately generate? We
compare the accuracy of the LLM output for different
assert* methods.

RQ4 Effectiveness of the Oracles: Do the generated oracles
improve the mutant detection ability of the test cases?
We compare the mutation score of the test cases with
and without the generated oracles.

Figure 4 does not report the time for llama3.3 because
it was run on a different cluster and the measurements are
incompatible.

B. Experimental Setting

To generate an oracle, our experiments remove the pro-
grammer-written oracle from the test case, prompt an LLM

to generate an oracle for the test prefix, and compare the
LLM-generated oracle with the original programmer-written
one. Thus, we use the 13,866 oracles manually designed by
the 135 projects’ developers as baseline.

Overall, our experiments prompted 10 LLMs with 4 differ-
ent prompts for each oracle, for a total of 610,104 queries.

For RQ1–RQ3, we measure the accuracy of LLM-generated
oracles in terms of their similarity to the original programmer-
written oracles. An exact match is when two oracles are
character-for-character identical. An inclusion match is when
one of the two oracles is a substring of the other. We refined
the limited automatic comparison by running the mutation
analysis on a sample set of oracles to measure the effectiveness
of the oracles generated (RQ4). We executed all the experi-
ments on an Ubuntu 20.04 cluster with four NVIDIA A100
GPUs, each with 40 GB of VRAM.

String matching and substrings can be easily automated,
which is essential for a large-scale experiment such as ours.
However, both measures are pessimistic under-approximations
of the accuracy of the LLMs. Exact matching misses generated
oracles that semantically match the original oracles, while
expressed in a different syntactic form. We observed that
exact matches sometimes failed due to small and easily fixable
syntactic differences, like a missing semicolon.

C. RQ1 Impact of the LLM on the Generated Oracles

We measure the effectiveness of the LLM (research question
RQ1) as the percentage of oracles that the LLM generates with
respect to the original oracles.

Figure 4 reports the accuracy of the set of generated oracles
for each combination of LLMs and prompts. Column “no
oracle” indicates the percentage of outputs of the LLM that
are not oracles, that is, they do not contain an assert statement.
In any row, the “exact match” column is a subset of the
“inclusion” column, and the “inclusion” column plus the “no
oracle” column is less than or equal to 100%.

The best-performing models are the largest models:
qwen2.5-32b, qwen2.5-coder-32b, llama3.3-70b, qwen2.5-
coder-14b, qwen2.5-14b, phi4-14b. The only exception is the
reasoning model phi4-reasoning-14b that performs particularly
poorly despite its size. It usually generates no oracle (over 75%
of the time as indicated in column “no oracles”).

Figure 4 indicates similar performance for different types
of model. For example, qwen2.5-coder behaves similarly to
qwen2.5 at each model size. It is surprising that the code
models perform similarly to the general models at our code
generation task. We hypothesize that the best performance of
qwen-2.5 is due to a training set particularly rich in code,
as stated in the Qwen2.5’s technical report: The pre-training
data increased from 7 trillion tokens to 18 trillion tokens, with
focus on knowledge, coding, and mathematics [42].

RQ1 Findings: The size of the LLM matters, while the
type and model do not. Scaling from 1.5b to 32b parameters
multiplies inclusion accuracy almost ten-fold ( 3% to 29%),
and it is consistent across both code and generic LLMs.



Fig. 4: Accuracy for each combination of LLMs and prompts. The models are sorted by the “average” column.

LLM Prompt Accuracy Time

Type Model Size Type exact match inclusion (s)

# % # % avg. no oracle

Prefix-Callees 806 5.8% 3,993 28.8%

29.4%

8.4% 1.04
Code qwen2.5-coder 32b Prefix-Callees-TestCl 673 4.8% 4,067 29.3% 8.0% 4.05

Prefix-Callees-FocalCl 821 5.9% 4,010 28.9% 7.2% 1.16
Prefix-Callees-TestCl-FocalCl 621 4.5% 4,266 30.7% 7.4% 4.17

Prefix-Callees 2,923 21.0% 3,960 28.5%

29.2%

5.0% 1.06
General qwen2.5 32b Prefix-Callees-TestCl 2,883 20.8% 4,100 29.5% 4.2% 4.08

Prefix-Callees-FocalCl 2,944 21.2% 4,026 29.0% 5.0% 1.18
Prefix-Callees-TestCl-FocalCl 3,762 27.1% 4,124 29.7% 3.9% 4.28

Prefix-Callees 1,379 9.7% 3,118 21.9%

22.9%

3.9% N/A
Instruct llama3.3 70b Prefix-Callees-TestCl 1,714 10.3% 3,868 23.2% 1.4% N/A

Prefix-Callees-FocalCl 1,463 10.5% 3,146 22.7% 1.5% N/A
Prefix-Callees-TestCl-FocalCl 1,911 11.4% 4,015 24.0% 1.2% N/A

Prefix-Callees 968 7.0% 2,946 21.2%

20.9%

1.6% 0.58
Code qwen2.5-coder 14b Prefix-Callees-TestCl 889 6.4% 2,790 20.1% 3.4% 2.18

Prefix-Callees-FocalCl 939 6.8% 2,976 21.4% 2.0% 0.64
Prefix-Callees-TestCl-FocalCl 943 6.8% 2,870 20.7% 3.0% 2.28

Prefix-Callees 233 1.7% 2,910 21.0%

20.7%

1.8% 0.59
General qwen2.5 14b Prefix-Callees-TestCl 337 2.4% 2,866 20.6% 3.2% 2.18

Prefix-Callees-FocalCl 362 2.6% 2,886 20.8% 1.7% 0.66
Prefix-Callees-TestCl-FocalCl 316 2.3% 2,823 20.3% 2.5% 2.29

Prefix-Callees 1,562 11.2% 2,566 18.5%

17.8%

0.8% 0.78
General phi4 14b Prefix-Callees-TestCl 1,429 10.3% 2,424 17.5% 3.8% 2.69

Prefix-Callees-FocalCl 1,515 10.9% 2,464 17.7% 1.0% 0.91
Prefix-Callees-TestCl-FocalCl 1,426 10.3% 2,398 17.3% 3.7% 3.36

Prefix-Callees 560 0.1% 642 4.6%

4.6%

0.9% 0.60
General phi4-mini 3.8b Prefix-Callees-TestCl 13 0.1% 634 4.6% 2.9% 1.42

Prefix-Callees-FocalCl 28 0.2% 605 4.4% 0.9% 0.76
Prefix-Callees-TestCl-FocalCl 14 0.1% 636 4.6% 2.1% 1.44

Prefix-Callees 16 0.1% 642 4.6%

4.6%

77.3% 38.47
Reasoning phi4-reasoning 14b Prefix-Callees-TestCl 13 0.1% 634 4.6% 76.3% 42.11

Prefix-Callees-FocalCl 28 0.2% 605 4.4% 78.3% 36.17
Prefix-Callees-TestCl-FocalCl 14 0.1% 636 4.6% 75.3% 41.99

Prefix-Callees 148 1.1% 536 3.9%

3.3%

3.6% 0.24
General qwen2.5 1.5b Prefix-Callees-TestCl 39 0.3% 403 2.9% 7.2% 0.61

Prefix-Callees-FocalCl 90 0.6% 486 3.5% 5.4% 0.27
Prefix-Callees-TestCl-FocalCl 54 0.4% 395 2.8% 6.5% 0.62

Prefix-Callees 155 1.1% 436 3.1%

2.7%

12.6% 0.21
Code qwen2.5-coder 1.5b Prefix-Callees-TestCl 120 0.9% 339 2.4% 17.6% 0.56

Prefix-Callees-FocalCl 147 1.1% 410 3.0% 14.8% 0.22
Prefix-Callees-TestCl-FocalCl 126 0.9% 329 2.4% 15.3% 0.58

D. RQ2 Impact of the Prompt on the Generated Oracles

We measure the effectiveness of the information used to
prompt the LLM as the percentage of oracles that the LLM
generates with different information in the prompt. Surpris-
ingly, the difference among the 4 is irrelevant for any of the
models, both for exact match and inclusion. Thus, adding in-
formation (focal and test class) to the prefix and call increases
the size of the prompt without significantly improving the
oracle generation. The results indicate that the code, being
it the focal class or the test class, does not include relevant

information about the oracles.

RQ2 Findings: A prompt containing the test prefix and
called methods provides enough information to generate
oracles. Additional information like focal class and test class
does not significantly improve the generated oracles.

E. RQ3 Difficulty of Different Types of Oracle

Figure 5 shows the percentage of generated oracles that
match the programmer-written ones, grouped by type of ora-
cles (the assert* methods that the oracle calls). In the figure,



we refer to inclusion matching to compare the original with
the generated oracles. The category Other groups the types
that contain fewer than 10 oracles.

The diagram reports the oracle type on the x-axis, and labels
the bars with the percentage and the number of oracles of
the given type. The bars are labeled with the total number of
oracles and the percentage of matching oracles for each type.

The different distribution among the assertion types for
nine of the types varies from 23.4% (assertInstanceOf) to
34% (assertArrayEquals), with a percentage over 35% for
assertNotEquals (40.6%), and a percentage below 20% for
four types of oracles. We observe that the type of oracle has
some impact on the generation process, with some outliers
performing both better and worse than the majority of types.
However, the figure refers to the inclusion matching, which
does not capture semantic matches that differ syntactically,
and this does not allow us to generalize the result. Moreover,
fig. 6 shows a summary where each datapoint is one of the
13,866 predicted by each LLM for each prompt. So, it contains
all the 610,104 predictions of this study. The results are similar
to fig. 5, showing also that there is not a specific configuration
that works better on a specific type of assertion. Finally, we
computed the Pearson correlation between the frequency of
each assertion type and the matching rate: r = 0.112, p =
0.72, which underlines the non-correlation between these two
factors.

RQ3 Findings: The effectiveness of the generation process
depends on the type of oracles, albeit with no clear winners
or losers; however, the approximation of inclusion matching
does not allow us to generalize the result.

F. RQ4 Effectiveness of the Generated Oracles on the Test
Cases

We measure the effectiveness of the generated oracles (re-
search question RQ4) by comparing the mutation score of the
test suite with generated oracles to the mutation score of the
test suites with no oracles and with the original oracles. The
comparison to no-oracles measures the impact of the generated
oracles on the precision of the test suite. The comparison to the
original oracles measures the effectiveness of the generation
process with respect to well-designed oracles. The comparison
of the mutation score of all oracles to the mutation score of
the original oracles only measures the impact of the generated
oracles on developers’ test suites. We experimented with
qwen2.5 32b prompted with text prefix, method call, test class,
and focal class, one of the best performing configurations,
executed on a sample set of projects that meet the requirements
discussed in section III-D (projects that compile, execute and
support PIT).

To compute the mutation score, we had to discard all oracles
that fail since PIT requires a green test suite. Figure 7 reports
the number of generated oracles that do not compile (Com-
pilation Failure), fail (Test Failure), and pass (Test Passes)
for the four projects we used in this research question. We

discarded between 1 in twilio/twilio-java (17%), and 33 in
wmixvideo/nfe (55%) oracles, 10 oracles on average (40%).
We manually verified that the 8 oracles that fail (Test Failure)
are incorrect (false positives). The test cases that fail and that
PIT ignores may still be useful to uncover real bugs (for
instance, failures due to correct oracles in a faulty program).
We manually verified that the 39 oracles that pass (Test Passed)
are correct (no false negatives), highlighting the potential of
LLMs for creating oracles useful for mutation testing.

Figure 8 presents the mutation score we obtained for four
projects without oracles (Column “Without oracles”), with the
generated oracles (Column “With generated oracles”) with
the original oracles (Column “With original oracles”) and
with both original and generated oracles (column Original
+ Generated oracles). Figure 8 reports the mutation score
in percentage. The results indicate that the generated oracles
significantly improve the test cases without oracles, with a
relative increment that ranges from 76% to 443%, and perform
similarly to the original oracles, with a loss of 40% in the
worst case and a gain of 30% in the best case, with an
average loss of 10%. The generated oracles added to the
original oracles improve the mutation score only for a project
(wmixvideo/nfe), and gain the same score for the other three
projects. While the improvement over the test cases with no
oracles is largely expected, the behavior of being not too
far and in one case even better than the original and very
well-written oracles is quite surprising, and indicates the high
quality of the generated oracles. The significant improvement
(from 61% to 80%) of the generated oracles added to the
original oracles in the only project where the generated oracles
obtain a high mutation score indicates that a good number of
generated oracles can improve over the original oracles.

We performed a qualitative analysis of all 79 LLM-
generated oracles of the four projects and we observed that:

• Developers generate assertions with specific literals
hardly predictable by LLMs (for instance, %3C%3Fxml+

version%3D%221.0%22+encoding%3D%22UTF-8%22%3F%3E

%3CConversationRelay%2F%3E). LLMs produce weaker
still-correct assertions, usually containing references
to previous elements of the test prefix (for instance,
elem.getElementAttributes().size()).

• LLMs can extract patterns from test prefixes that con-
tain multiple assertions, and correctly predict subsequent
assertions, although LLMs seldom fail to understand the
underlying semantics, sometimes due to missing context
in the prompt.

• The two limitations above are rooted in the information
retrieval techniques, and can be addressed with advanced
information retrieval techniques that intelligently comple-
ment prompts with relevant contextual information.
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Fig. 5: For each assertion type or method, how often at least one of the four prompts of each LLM exactly matched the
human-written oracle.
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Fig. 6: Average of all the 610,104 oracle predictions per type of assertion (the dash line represents the overall mean).



Fig. 7: Number of test cases that do not compile, fail, and pass
with the generated oracles.

Project Compilation Failure Test Failure Test Passed

twilio/twilio-java 1 0 5
bkiers/liqp 0 2 3
wmixvideo/nfe 29 4 27
wearefrank/ladybug 2 2 4

TOTAL 32 8 39

Fig. 8: Mutation scores (%) with different test oracles. The
test code is identical, and only the oracles differ.

Original +
Original Without Generated Generated

Project oracles oracles oracles oracles
twilio/twilio-java 25% 3% 15% 25%
bkiers/liqp 42% 7% 38% 42%
wmixvideo/nfe 61% 45% 79% 80%
wearefrank/ladybug 52% 19% 41% 52%
Average 45% 19% 43% 50%

RQ4 Findings: The generated oracles that compile and pass
raise the mutation scores of the test suites with no oracles
by 24.8% percentage points on average. Even with compila-
tion failures and occasional false positives, LLM-generated
oracles provide a substantial test suite improvement.

V. DISCUSSION

In this paper we report the results of an empirical study
about the effectiveness of LLMs to generate test oracles, by
focusing on the size of the LLM, the contextual information
in the prompts, and the effectiveness of the generated oracles
in terms of mutation analysis. Here we summarize the main
results and highlight concrete takeaways.

A. The Model Size Impacts the Oracle Accuracy (RQ1)

Findings: The accuracy of the generated oracles improves
from around 3% to 29%, when we move from a 1.5-billion-
parameter checkpoint to a 32-billion-parameter checkpoint.

Implications: The pronounced size effect suggests that
oracle generation is capacity-limited rather than knowledge-
limited. Favoring larger models over prompt engineering sig-
nificantly widens the accuracy delta.

B. Code Models do not Significantly Impact the Oracle Accu-
racy (RQ1)

Findings: LLMs trained on code do not perform signif-
icantly better than LLMs trained on general text. The benefit
appears logarithmic.

Implications: Favoring code LLMs over general LLMs
does not significantly widen the accuracy delta.

C. A Test Prefix and Method Call Prompt Is Sufficient (RQ2)

Findings: Augmenting the prefix and method calls
prompt with focal-class and test-class source increases context
length, but does not significantly improve accuracy (less than
one percent). The extra information adds latency and token
cost without significant prediction quality gains.

Implications: Adding only the test prefix and the invoked
methods minimizes latency and fits within context windows
of many LLMs. The cost of extra information in the prompt
does not pay off: the benefit is negligible while hitting model
context length limits quickly.

D. LLM-Generated Oracles Boost the Mutation Score (RQ4)

Findings: The LLM-generated oracles largely boost the
mutation score of the test suite (+25% on average over four
projects) and achieve a mutation score comparable to carefully
generated test oracles (-10% on average over four projects).

Implications: LLMs can generate surprisingly good test
oracles for unit test cases, and can largely reduce human effort.

E. Open Research Directions

The results of the empirical study reported in this paper
spotlight some key directions that can drive future research:
Privilege the LLM size over code-specific training, focus
on the quality of the test prefix and the code information
rather than the amount of extra information provided with the
prompt, and investigate how to generalize the good results of
generating simple oracles towards the generation of particu-
larly complex oracles.

VI. THREATS TO VALIDITY

A. Internal Validity

The results may vary with different parameters and tem-
peratures. We mitigated the risk of biased results by using
only default LLM configurations, reporting the parameters
and temperature used in the experiments, and making the
benchmark publicly available in a replication package to allow
the reproduction of the results.

The results may change with the future LLM milestones. We
mitigated the risk of aging results by experimenting with 10
popular LLMs of different sizes, to investigate the impact of
the LLM on the generation process. We experimented with
open source LLMs only. Proprietary LLMs, like OpenAI’s
models, may perform better than the LLMs we evaluate in
this paper.

The manual validation of the 13,866 generated oracles is
almost impossible. We automatically validated the generated
oracles by comparing them with the available and carefully
designed oracles. We mitigated the risks of incorrect validation
by implementing the comparison with string matching and in-
clusion that misses valid oracles that differ from the reference
manual oracles only for even small syntactic elements. We
decided to report conservative results that are a pessimistic
under-approximation of the actual data, to avoid any risk of
overestimating the results.

The test mining and mutation analysis setup may miss some
test cases and mutants, thus reducing the effectiveness of the
results. We rely on publicly available and well-known tools
(PyDriller, Tree-Sitter, JavaParser, Maven, and PIT) to reduce
the risk of mis-minings and mis-mutations due to errors in the
tools.



B. External Validity

The results may be biased by the data used to build the
benchmark and the building process.

We mitigated the risk of biased benchmarks by mining
Java/Maven projects from popular repositories, and limiting
the subjects to test cases added after September 2024, the last
reported training cutoff date of the LLMs we used.

We experimented only with LLMs with a publicly declared
cutoff date, and we executed all LLMs locally. We relied
only on open-source LLMs for reproducibility. We excluded
OpenAI models that are only available on the cloud and do
not declare the cutoff date, to avoid the risk of biases due to
executions out of our control.

VII. RELATED WORK

In this paper, we propose the first large-scale evaluation
of the capability of LLMs to generate test oracles, on an
unbiased dataset intentionally designed to avoid leakage from
the training set.

The publicly available evaluations of LLMs for generating
test oracles appear in the still few papers that propose ap-
proaches that rely on LLMs to automatically generate test
oracles. These papers evaluate the proposed approach on
either public benchmarks or on small-scale datasets. Publicly
available benchmarks are likely included in LLM training data
and raise serious concerns about data leakage and inflated
performance estimates.

The most popular benchmark, Defects4J [26], has been pub-
licly available since 2014 and is likely included in LLM train-
ing data of approaches evaluated after 2020. Small benchmarks
provide only preliminary evidence and cannot be generalized.

AthenaTest by Tufano et al. [24] is the first noteworthy ap-
proach to generate test cases with LLMs. AthenaTest extends
the RNN-based approach of ATLAS [43] to generate the test
prefix and oracle from the unit implementation and its context.
The paper reports the results of the evaluation of AthenaTest
on Defects4J [26].

TOGA by Dinella et al. [23] generates test oracles with a
two-step neural ranking procedure. The paper evaluates the
assertion oracle inference on a variant of the ATLAS [43]
dataset and the exceptional oracle inference on a variant of
Methods2Test [24]. The ATLAS dataset is a corpus collected
from 9k open-source Java projects on GitHub. The variant of
ATLAS used for supervised training of TOGA includes over
170,000 labeled samples. The paper evaluates the assertion
oracle inference of TOGA on an ATLAS held-out test set of
size 8,024 and the exceptional oracle inference on a held-
out test set of Methods2Test of size 53,705. The dataset used
for evaluating the assertion oracle inference is relatively small
(size 8,024). The paper evaluates only TOGA, and the datasets
are not publicly available for further comparison, according to
the information of the authors of this paper.

Tratto by Molinelli et al. [16] generates axiomatic oracles
with a neuro-symbolic approach that combines neural net-
works with symbolic analysis. The paper evaluates the ap-
proach on a subset of oracles from Defects4J [26] compatible

with the dataset used to evaluate Jdoctor [7], to comparatively
evaluate the LLM approach of Tratto with the NLP approach
of Jdoctor. The comparison with Jdoctor indicates the potential
of the approach, however, the use of a subset of oracles from
Defects4J limits the generalizability of the results.

Hossain and Dwyer [17] analyze seven LLMs proposed be-
fore ChatGPT (before 2022) and TOGA with Defects4J [26].
Thus the evaluation suffers from the limitations of a dataset
that has been publicly available for many years.

Khandaker et al. [38] compare test oracles generation on 9
different combinations of 3 general purpose LLMs (GPT4o,
Hermes, and Llama) and 4 prompt types (including only the
test prefix with, extending the contextual information to the
methods of the focal class, and experimenting with the RAG
approach [44] on both the simple and extended versions). They
limit the analysis to general purpose LLMs, excluding those
pre-trained on the code, the instruct and the reasoning models.

Wang et al.’s recent survey [30] confirms the absence of
large-scale evaluation to assess the effectiveness of LLMs to
generate assertions for test cases added after their training cut-
off, and highlights the critical gap in understanding the true
generalization ability of LLMs for generating oracles.

In this paper, we evaluate the state-of-the-art LLMs with
a large and unbiased dataset intentionally designed to avoid
leakage from the training set, and we make the dataset pub-
licly available in a replication package for future evaluations,
while all the datasets, except for Defects4J, are not publicly
available, according to public information.

VIII. CONCLUSION

In this paper, we present the first unbiased study on the
effectiveness of LLMs to generate test oracles. We show the
experimental setting and the benchmark that we created to
evaluate LLMs. The benchmark includes 13,866 test oracles
that we mined from 135 Java projects, and that were created
after the cut-off dates of the training of the LLMs used in the
experiments, and are thus unbiased.

We discuss the results of the experiments that provide three
surprising insights: (i) LLMs generate test oracles with an
increase of the mutation score of the test cases comparable
to carefully manually generated test oracles, (ii) the code
LLM models do not perform significantly better than general
models, (iii) the test prefix and the methods called in the
program under test provide sufficient information to generate
good oracles, while additional code context does not bring
relevant benefits.

The results confirm the expectation that the size of the LLM
matters and the difficulty of LLMs to generate complex test
oracles, thus opening important research directions.
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