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ABSTRACT

Gradual typing enables developers to annotate types of their own
choosing, offering a flexible middle ground between no type annota-
tions and a fully statically typed language. As more and more code
bases get type-annotated, static type checkers detect an increas-
ingly large number of type errors. Unfortunately, fixing these errors
requires manual effort, hampering the adoption of gradual typing
in practice. This paper presents PyTy, an automated program repair
approach targeted at statically detectable type errors in Python. The
problem of repairing type errors deserves specific attention because
it exposes particular repair patterns, offers a warning message with
hints about where and how to apply a fix, and because gradual type
checking serves as an automatic way to validate fixes. We addresses
this problem through three contributions: (i) an empirical study
that investigates how developers fix Python type errors, showing
a diverse set of fixing strategies with some recurring patterns; (ii)
an approach to automatically extract type error fixes, which en-
ables us to create a dataset of 2,766 error-fix pairs from 176 GitHub
repositories, named PyTyDefects; (iii) the first learning-based re-
pair technique for fixing type errors in Python. Motivated by the
relative data scarcity of the problem, the neural model at the core of
PyTy is trained via cross-lingual transfer learning. Our evaluation
shows that PyTy offers fixes for ten frequent categories of type
errors, successfully addressing 85.4% of 281 real-world errors. This
effectiveness outperforms state-of-the-art large language models
asked to repair type errors (by 2.1x) and complements a previous
technique aimed at type errors that manifest at runtime. Finally, 20
out of 30 pull requests with PyTy-suggested fixes have been merged
by developers, showing the usefulness of PyTy in practice.
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# Error: 'draw_text_rectangle' for 1st argument, expected 'str' but got 'int'.
def draw_texture_rectangle( def draw_texture_rectangle(

texture: Texture, texture: Texture,

scale: float = 1): scale: float = 1):

draw_text_rectangle(scale, texture) draw_text_rectangle(texture, scale)

(a) Code with a type error.  (b) Type error fixed by swapping

arguments.

# Error: 'method_name' is declared to have type 'str' but used as type 'None'.
def _decorate_async_function( def _decorate_async_function(

method: Callable, method: Callable,

method_name: str = None): method_name: Optional[str] = None):

(c) Code with a type error.  (d) Type error fixed by adding an

Optional annotation.

Figure 1: Examples of type errors fixed by PyTy.

1 INTRODUCTION

Dynamically typed languages, such as Python and JavaScript, have
become very popular.! One reason is their lightweight syntax,
which does not require developers to specify types for parameters,
return values, or variables. Because this flexibility may negatively
affect the maintainability and robustness of code, in 2015, Python
adopted optional type annotations, enabling developers to annotate
types of their choosing.

Context. Since their introduction into the Python language, type
annotations have been getting increasingly popular [9]. To sup-
port developers, several automated approaches for adding type
annotations to existing code bases have been proposed, e.g., Type-
Writer [34], DeepTyper [17], Typilus [1], and work by Xu et al. [51].
While adding type annotations is generally considered a step for-
ward, newly added annotations often reveal previously unnoticed
type errors, which can be easily detected with a static type checker.
Unfortunately, developers commonly lack the time to fix these
errors [9], which hampers the usefulness of gradual typing.

Figure 1 shows two real-world, statically detectable type errors
along with their fixes, as performed by developers. The error pre-
sented in Figure 1a is caused by passing the arguments to a function
in the wrong order [35], i.e., a kind of problem that in statically
typed languages often can be prevented by the type system. The
developers fix the problem by swapping the arguments.? The error
presented in Figure 1c is caused by annotating a parameter to be a
string, while at the same time, initializing it to None, which is type-
incompatible with str. To fix this error, the developer modifies the
type annotation to Optionall[str].? As illustrated by these exam-
ples, there may be many ways of addressing different type errors
in Python, and finding the right fix for a given error is non-trivial.

Lhttps://octoverse.github.com/#top-languages-over-the-years
Zhttps://github.com/pythonarcade/arcade/commit/c6aL.883
3https://github.com/awslabs/aws-lambda-powertools-python/3898e55
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Significance. Organizations with large Python code bases invest
significant efforts toward using type annotations and type checkers.
For example, Google’s Python style guide mentions that developers
are “strongly encouraged to enable Python type analysis” because
“The type checker will convert many runtime errors to build-time
errors”.* Likewise, Dropbox type-checked over four million lines
of Python in 2019, because “A type checker will find many subtle
(and not so subtle) bugs. A typical example is forgetting to handle a
None value or some other special condition”.> Finally, Meta “use[s] it
extensively to maintain the codebases of Facebook and Instagram”.®

To handle type errors in legacy code and type errors revealed
by adding type annotations to previously unannotated code, an
automated technique to help developers fix such errors would be
desirable. However, despite the increasing popularity of automated
program repair (APR) [25], there currently is no APR approach
targeting static type errors in Python. Compared to repair scenarios
targeted by existing APR approaches, fixing type errors in Python
differs in three important ways, making the problem particularly
amenable to automated repair. First, type errors require specific fix
patterns, which an approach specifically targeting such errors can
exploit. Second, when a gradual type checker reports a type error,
the report includes an error message that may offer hints about the
location and nature of the problem. Third, the gradual type checker
also offers an automatic oracle, which an APR technique can use to
validate candidate fixes.

Approach. This paper introduces PyTy, the first APR approach
for static type errors in Python. To guide the design of PyTy, we
investigate in a preliminary study how developers typically fix type
errors. The study investigates (i) how repetitive type errors and
their fixes are, (ii) how difficult it is to localize the fix location, and
(iii) to what extent the error message provided by a type checker
helps in finding the fix. In short, the results show that there are
recurring fix patterns, but ambiguous rules for when to apply them,
and that the locations and error messages provided by the type
checker are valuable information.

Based on the results of the preliminary study, we design PyTy
as a data-driven approach. This kind of approach requires a dataset
for training and evaluation. However, automatically collecting a
large-scale dataset of type error fixes is challenging because it
requires identifying relevant commits and isolating the type error
fixes in these commits. We address these challenges through an
automated approach that combines gradual type checking and delta
debugging [54]. Using this approach, we obtain 2,766 real-world
pairs of type errors and corresponding single-hunk fixes from 176
GitHub repositories. To the best of our knowledge, our PyTyDefects
dataset is the first of its kind.

The core of PyTy is a neural type error repair model. Motivated
by the relative data scarcity of the problem, we present a cross-
lingual transfer learning approach. Specifically, we base PyTy on
the existing APR system TFix [5], which has been trained to fix
linter warnings in JavaScript code. By fine-tuning the TFix model
with PyTyDefects, we retain the knowledge learned from fixing

“https://google.github.io/styleguide/pyguide html#2212-pros
Shttps://dropbox.tech/application/our-journey-to-type-checking-4-million-lines- of-
python
®https://developers.facebook.com/blog/post/2021/05/10/eli5-pyre-fast-error-
flagging-python-codebases/
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JavaScript code and apply it to fixing Python type errors. To ensure
that every fix suggested by PyTy indeed fixes the targeted type error,
the approach checks candidate fixes with a gradual type checker,
and returns a fix only if it removes the error.

Results. Our evaluation on a held-out subset of 281 type error
fixes shows that PyTy finds a fix that removes type errors for 85.4%
of all errors. Moreover, 54.4% of the predicted fixes exactly match
the developer’s fix. Comparing PyTy with previous work, we find
that it clearly outperforms several state-of-the-art large language
models (text-davinci-003, gpt-3.5-turbo, and gpt-4) asked to repair
type errors (54.4% vs. 26.4% exact matches) and complements a
technique aimed at type errors that manifest at runtime [32]. As
evidence of the usefulness of PyTy in practice, 20 out of 30 GitHub
pull requests with PyTy-suggested fixes have been merged by the
developers. Finally, we also validate the automatically gathered
PyTyDefects dataset underlying our approach, and find that almost
all gathered fixes are minimal and correct.

Contributions. In summary, the contributions of this paper are:

e An empirical study of how developers fix type errors.

o Atechnique to extract type errors and corresponding fixes through
a combination of gradual type checking and delta debugging,
which yields the first dataset of its kind, with 2,766 type error-fix
pairs from 176 GitHub repositories.

o Cross-language transfer learning that uses a model pre-trained
on JavaScript to repair type errors in Python.

e Empirical evidence of the effectiveness of the approach when
being applied to real-world type errors.

2 BACKGROUND ON PYTHON TYPE
CHECKERS

In 2015, Python introduced a syntax for type annotations. These
annotations are optional and not checked at runtime. The Python
language also does not define a static type system, but leaves type
checking to third-party tools. In response, the Python community
has developed several type checkers that perform gradual type
checking [40], i.e., a form of type checking aimed at exposing in-
compatibilities between the provided type annotations while al-
lowing parts of the program to remain unannotated. Popular type
checkers include Pyre, Mypy, Pytype, and Pyright.” The type sys-
tems implemented by checkers differ, and hence, different type
checkers may reveal different type errors [38]. Conceptually, the
approach described in this paper is independent of a specific type
checker and could be adapted to any of the popular checkers. Our
implementation builds upon Pyre because it is widely used, avail-
able as open-source, backed by a major tech company, and has
been the basis of recent work on studying Python type annotation
practices [9]. Pyre reports a wide range of type-related problems,
such as incompatible variable, parameter, and return types, uses of
unbound names, unsupported operands, and inconsistent method
overrides. We use Pyre’s default configuration, i.e., it runs only on
functions that are at least partially type-annotated. In the remainder
of the paper, we refer to Pyre using the term type checker.

7https://realpython.com/python-type-checking/
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3 PRELIMINARY STUDY

To guide important design decisions of our approach, we perform a
preliminary empirical study that investigates three questions (PQs):

PQ1 How repetitive are real-world type errors and type error fixes?
Answering this question is useful for deciding about the kind
of technique, e.g., rule-based vs. data-driven, to build for au-
tomatically repairing type errors.

PQ2 How difficult is identifying the fix location for a given type
error? Answering this question helps us decide how PyTy can
effectively determine where in the given code to fix a type
error.

PQ3 How useful for fixing type errors are the error messages pro-
vided by a type checker? Answering this question is useful to
determine if and how a repair technique will be able to benefit
from error messages.

3.1 Data Collection

To address the above questions, we systematically study type error
fixes in the version histories of popular projects. We apply three
strategies to select commits with type error fixes. First, we search
for GitHub issues that call for help in fixing type errors. Second,
we search for commits on GitHub via the keywords: “type+fix”,
“pyre” and “mypy” in Python repositories with more than 100 stars.
Third, we use a dataset extracted from the top 10,000 Python repos-
itories [9], which contains commits with edits related to inserting,
removing, or updating a type annotation.

After collecting the commits, we clone the repositories and run
the type checker before and after each commit. During our manual
inspection, we observe that some warnings and fixes are not useful
for our study towards building an APR tool, and hence, we remove
(i) fixes that delete entire functions or files, without actually fixing
a type error®, (i) import-related warnings, as they are often due to
libraries missing in the type checker’s search path, and (iii) fixes
that add comments # pyre-ignore or # type:ignore to suppress
warnings from the type checker. Overall, for the preliminary study,
we collect 125 type error fixes from 14 GitHub repositories.

3.2 Results

3.2.1 PQI: Repetitiveness of Type Errors and Fixes. We analyze the
most frequent classes of type errors fixed by developers, which
helps understand which errors concern developers the most, and
hence, should be the focus of an APR technique. Figure 2 (left) shows
the distribution of the most frequently fixed classes of type errors.
We take the classes of type errors from the Pyre documentation.’
The most frequent classes are incompatible return, variable, and
parameter types, which together account for 64.8% of the dataset.
For example, one such fix is for a function expected to return a
str but that actually returns int due to a statement return -1. The
error is fixed by changing the return statement to return "x".1
We also analyze the most frequent types involved in the fixes.
We observe that Python’s built-in types occur frequently, e.g., str
(23.9%) and int (22.4%). Also relatively frequent are types related to

8E.g., https://github.com/vkbottle/vkbottle/commit/2bc36b6
https://pyre-check.org/docs/errors/
Ohttps://github.com/TheAlgorithms/Python/commit/97b6ca2
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Figure 2: Type errors (left) and related fix patterns (right),
based on 125 type error fixes collected in the preliminary
study.

optional values, such as Optional (9.3%) and None (5.6%), and other
types from the typing library, e.g., Union (7.1%).

We study how type errors are fixed by manually categorizing the
error-fixing code changes into 17 classes. This categorization was
performed by one of the authors based on grounded theory [14], i.e.,
we discovered and refined fix patterns until they sufficiently covered
the studied examples. Figure 2 (right) shows the distribution of the
identified fix patterns. Beyond the distribution, the figure shows
that there is no simple mapping from classes of type errors to fix
patterns. The most frequent relationships are Incompatible return
type fixed with the pattern Modify function return type (14.4%) and
Incompatible parameter type fixed with the pattern Modify function
parameter type (13.6 %). However, the same class of type error may
also get addressed by applying several other fix patterns.

Answer to PQ1: A few kinds of type errors account for most
fixed errors, and the fixes often involve Python’s built-in data
types. The fixes expose some recurring patterns, but only an
ambiguous mapping from classes of type errors to fix patterns.

3.2.2 PQ2: Difficulty of Identifying the Fix Location. To assess the
difficulty of localizing where to fix type errors, we start by inves-
tigating how much code developers typically change to fix a type
error. Based on the categorization of fix patterns in Figure 2, we
see that most fixes are single-line edits, such as modifying a type
annotation from one type to another, changing an operator, remov-
ing a type annotation, or adding a cast. Next, we study the location
of the fixes (Figure 4a). More than half of the fixes happen exactly
in the line where the type error is reported. Other locations include
the function parameters, return annotations, and function callees
(i.e., the functions that are called).

Answer to PQ2: Most fixes of type errors affect only a single line
of code, which often is the line where the type checker reports
the type error.


https://github.com/vkbottle/vkbottle/commit/2bc36b6d2e71e6a6d24765312cf786753201be01#diff-c4eef9f9c1a249a379aa69f4565090841aa8dabceb6bf557c7fe469a3bc05543L21
https://pyre-check.org/docs/errors/
https://github.com/TheAlgorithms/Python/commit/97b6ca2#diff-66f650b3a498fb126465a4b809ccb5e16f7766c633fd1f14cb06761cb880e3ccL17
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def is_valid_public_key_static(
local_private_key_str: str, remote_public_key_str: str, prime: int
) —> bool:

[Error message] Expected “int™ for 1st parameter but got “str-.
if pow(remote_public_key_str, (prime - 1) // 2, prime) == 1:

(a) Commit with a type error.

Yiu Wai Chow, Luca Di Grazia, and Michael Pradel

def is_valid_public_key_static(
remote_public_key_str: int, prime: int
) —> bool:

[Fix pattern] Modify function parameter type.
if pow(remote_public_key_str, (prime - 1) // 2, prime) == 1:

(b) Commit that applies the “Use expected type” pattern.

def get_model_for_finetuning(

previous_model_file: Optional[Union[Path, Text]]
[Error message] Expected 'Optional[Text]', got 'Union[None, Path, Text]'
) -> Optionall[Text]:

(c) Commit with a type error.

def get_model_for_finetuning(
previous_model_file: Optional[Union[Path, Text]]

[Fix pattern] Modify function return type.

) -> Optional[Union[Path, Textl]:

(d) Commit that applies the “Do not use expected type” pattern.

Figure 3: Examples of fixing type errors based on error messages.

3.23  PQ3: Usefulness of Error Messages and Locations. Finally, we
want to understand how useful the error messages provided by a
type checker are for fixing type errors. To this end, we extract from
the error message the kind of error, the types involved, and any
hints about the location and the fix. We classify an error message
as correctly hinted if the message contains the type that the devel-
oper uses to fix the error. Figure 3a shows an example, where the
type checker returns the following error message: “Incompatible
parameter type [6]: Expected int for 1st positional only parameter
to call pow but got str”, where the message hints at replacing str
with the correct type int.!! Note that the hinted type might not
be an exact match to the newly annotated type. For example, we
consider an error message that suggests str as correctly hinted also
if the developer fixes the error using Optional[strl.

Given the above definition, we find that 89 out of 125 (71.2%)
type fixes in our study are correctly hinted by the type checker.
These hinted types can serve as a reference for APR tools to narrow
down the search space. The types of code changes correctly hinted
by the checker are shown in Figure 4b.

Figure 4c shows how the developers use the correctly hinted
types. As an example, in Figure 3c, the type checker returns the
following error message: “Incompatible return type [7]: Expected
Optional[Text] but got Union[None, Path, Text]”.!2 The developer
does not fix the error by using the suggested type Union[None, Path,
Text], but instead uses Optional[Union[Path, Text]].In contrast,
the example in Figure 3b shows a case where the developer uses
the type suggested by the type checker. We find that for 64 out of
the 89 hints (71.9%) the type used by the developer is exactly as
suggested in the error message. It is also common to introduce a
value of the suggested type, e.g., by adding return -1 to a function
supposed to return int. Besides the 89 error messages that correctly
hint at the correct type, most of the remaining messages (24 out
of 36) give no hint at all. For example, this is the case for the error

»

classes “Undefined type”, “Invalid type”, and “Undefined attribute”.

Answer to PQ3: Most types used in fixes (71.2%) are correctly
hinted by the type checker, and developers often follow these
hints.

https://github.com/TheAlgorithms/Python/commit/6089536
2https://github.com/RasaHQ/rasa/commit/1ded5ef

3.3 Implications

The three main findings of the preliminary study guide the design of
our approach as follows. (PQ1) We observe that type errors and their
fixes expose recurring patterns, which might suggest an approach
based on manually designed rules and heuristics for selecting them.
However, we also find that there is only an ambiguous mapping
from errors to fix patterns, making a rule-based approach laborious
and fragile. As a result, we decide against a rule-based and in favor
of a data-driven approach, aiming for a model that learns when
to apply which fix pattern from fixes performed by developers.
(PQ2) We find that most type errors are fixed by editing a single line,
and that this line is often localized correctly by the type checker.
Hence, we focus our work on fixing type errors in single-hunk
edits'® and exploit the localization hint given by the type error
location. (PQ3) We find that the error message provided by the type
checker often gives valuable hints for finding the fix, e.g., which
type to use. As a result, we provide the error message as an input
to our approach.

4 APPROACH

Based on the findings of our preliminary study, we design PyTy,
a data-driven approach to automatically fix static type errors in
Python using a cross-language transfer learning approach. Figure 5
shows an overview of the approach, which consists of two phases.
First, during the offline phase, we automatically collect a dataset
of type error fixes from GitHub, which we call PyTyDefects, by
combining delta debugging and gradual type checking, followed
by fine-tuning a pre-trained model [5] with PyTyDefects. Second,
during the online phase, PyTy receives code with a type error as the
input and then queries the model for fix candidates. The approach
uses the type checker to validate that the type error gets resolved
when applying a fix candidate, and then reports only fixes that are
guaranteed to remove the targeted type error.

4.1 Automated Data Gathering

To build a learning-based APR model, we must first collect a relevant
dataset as our training data. As a first step, we search for Python
repositories that are popular (> 100 stars), have a manageable size
(< 5GB), and were created between 2010 and 2021 on GitHub. We

3Hunks may be larger than single lines, allowing PyTy to predict some fixes that
involve multiple lines.
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Figure 4: Fix locations and usefulness of error messages.
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Figure 5: Overview of the approach.

use the keywords “fixing+typing”, “fixing+pyre”, “fixing+mypy”,
“typing+bug”, and “typing+error” to search for commits that possi-
bly remove type errors. Next, we run the type checker before and
after each such commit to find commits that indeed remove type
errors. As a result, we obtain 32,330 type errors that are removed
by 4,515 commits in 176 GitHub repositories.

Many of the extracted commits contain changes not directly
related to fixing type errors. Moreover, a single commit often fixes
multiple type errors. Figure 6 illustrates these problems with an
example.!* To isolate individual type error fixes, we present a delta
debugging-inspired [54] algorithm that reduces commits into small
code changes that fix a single type error. The basic idea is to itera-
tively reduce the set of code hunks while preserving the fact that
the code change fixes a particular type error.

Algorithm 1 summarizes our approach for reducing a commit to a
small set of code changes that fix the given type error. We illustrate

4Simplified from https://github.com/jazzband/django-redis/commit/5f6383

Algorithm 1 Extract relevant hunks with delta debugging.

Input: Files f,;; with type error err and fp,, after commit with err fixed
Output: Minimal hunk(s) of the commit, containing only err fixed

> Set of all warnings in fyiy
> All diff hunks between f;;; and frew
> Set default granularity

1: W « type_check(foq)

2: Doriginal — diff (fold> fnew)
3: granularity « 2

4: while granularity < size(D,rigina) do
5 min « False

6 D « Doriginal

7: while size(D) > 1 and granularity > 1 do
8 for d in split(D, granularity) do > Split the set of hunks D
9

ffixed < patch(foa, d) > Apply a subset of D to file fy4

10: if parsable( fxeq) then

11: Wxea < type_check(ffixeq)

12: if A err in Wyyeq and Wyyq == W then
13: if size(d) == 1 then

14: return d

15: else

16: D «d

17: min «— True

18: break

19: if min == False then

20: if granularity 2 < size(D) then
21: granularity « granularity = 2
22: else if granularity == size(D) then
23: return D

24: else

25: granularity = size(D)

26: Sfixed < patch(foiq, D) > Apply D (size=1) to file fo4

27: if parsable( fixeq) then

28: Wiixed < type_check(ffixed)
29: if 3 e in Wyyeq and Wyyeg — W = 0 then
30: return D

the algorithm using the example in Figure 6. We focus on the type
error “Unbound name: basestring is used but not defined in the
current scope”, reported for the line in hunk H1. The error gets
fixed by changing the base class to object. Our approach considers


https://github.com/jazzband/django-redis/commit/5f6f38362dd587aae78d9b8ff97a1e2fe800ba5d#diff-680e70773dd1969f27b4d66da3dd5759928346dceb2599182141ecbc7894764cL17
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# Hunk H1
class CacheKey(basestring):

# Hunk H1
class CacheKey(object):

# Hunk H2 # Hunk H2
pass def __init__(self, key):
self._key = key
# Hunk H3 # Hunk H3

if isinstance(key, CacheKey):

key = CacheKey(smart_str(key)) key = CacheKey(key)

+H

Hunk H4
if timeout == 0:

# Hunk H4
if timeout is None:

(a) Commit 1. (b) Commit 2.

Figure 6: Multi-hunk commit that fixes multiple type errors.

the four code hunks (H1, H2, H3, and H4) of this commit, and
determines which hunks are relevant for fixing the type error with
the following steps, where line numbers refer to Algorithm 1:

(1) The algorithm splits the set of hunks into H1+H2 and H3+H4 with
granularity two (line 8):
(a) The algorithm patches the code with only hunks H1+H2,
which yields parsable code (lines 9 and 10).
(b) The type error disappears and there are no new errors
(lines 11 and 12).
(c) There are still two hunks H1+H2 (line 13).
(2) The algorithm splits the code hunks H1+H2 into H1 and H2 (line 8):
(a) The algorithm patches the code with only hunk H1, which
yields parsable code (lines 9 and 10).
(b) The type error disappears and there are no new errors
(lines 11 and 12).
(3) The algorithm returns H1 as a minimal code change to fix the
type error (line 14).

To properly track the error location while reducing the hunks,
we need to keep track of how the line numbers change. To this end,
we calculate the new line number based on how many lines are
inserted or removed in each code hunk. We consider the error fixed
if the error no longer exists at the corresponding line and column.
If the error is located inside a code hunk, i.e., the code with the
error is being modified, we consider the error as fixed only if all
lines in the code hunk are free of errors after the change.

To ensure the quality of PyTyDefects, we apply additional filter-
ing steps. Algorithm 1 checks that there are no new errors intro-
duced by the code changes (line 12). The algorithm also rejects any
set of code hunks that result in parsing failures (line 10). The space
complexity of the algorithm is O (2 N), where N = size(Doriginai)
and the time complexity is O(N *log N).

Running the algorithm on the 32,330 type errors gives 11,955
examples of reduced error fixes. We further filter them by keeping
only fixes that (i) are relatively small (< 512 characters and at most
three changed lines), which is motivated by limitations of the neural
model (Section 4.2); (ii) do not contain any error suppression; (iii) are
not only deletion; (iv) are located close (i.e., within the same hunk)
to the reported bug location. Finally, after applying these filters,
PyTyDefects has 2,766 entries that cover ten frequent categories of

if not isinstance(key, CacheKey):
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type errors listed in Table 1. We select 10% (always rounding up
to the nearest integer) of the entries of each error class in this final
dataset as a test set, and then split the remaining fixes into 90% for
training and 10% for validation.

4.2 Neural Type Error Fixing

Given the automatically extracted dataset of type error fixes, PyTy
trains a neural model that predicts how to fix type errors. The input
to the model is a sequence of one or more lines, i.e., the size of a
single hunk, that contains a type error. The output of the approach
is a fix that removes the targeted type error.

4.2.1 Base Model. Instead of learning a model from scratch, we
fine-tune a model pre-trained on another APR task. Building on
a pre-trained model is motivated by the fact that PyTyDefects,
with 2,766 examples, is relatively small. As our base model, we use
TFix 5], a learning-based APR technique trained to fix linter errors
in JavaScript. We select TFix for three reasons: (i) it is already trained
on a bug fix dataset of 104,804 samples, (ii) it accepts error messages
as input, and (iii) the TFix authors used it to predict single line fixes,
which resembles our single-hunk setup. By fine-tuning TFix, PyTy
transfers the already learned knowledge to the related but different
domain of Python type errors (Section 6.3). TFix itself is based on
T5 [37], a transformer-based model that maps sequences of input
tokens to sequences of output tokens. The simple input and output
structure eliminates the need for implementing a static analysis tool
to transform our code into a specific structure, such as graphs [2, 10].
Furthermore, having an unconstrained token sequence may enable
the model to fix errors missed by a template-based APR approach,
which is inherently limited to its set of templates (Section 6.4.2).

4.2.2  Fine-Tuning for Python Type Error Fixing. To fine-tune TFix
with PyTyDefects, we follow the same input format as TFix:

“fix” ot om_l " _C, where “fix” and “:” are literals, ¢ is the class
of type error, m is the error message, I is the line of code with the
type error, _ represents a space, and C represents the buggy lines
of code (i.e., the single-hunk we extracted in Section 4.1). In the T5
framework, the string “fix” _ ¢ _m _ I _ “.” represents the current
task, and C represents the input of this task. The model outputs C’,

which we use as a replacement for C to fix the type error.

4.2.3  Python Code Pre- and Post-Processing. We use the tokenizer
from the Python standard library to pre-process the source code
and inject special tokens for indentation and dedentation. TFix uses
SentencePiece [22] as its tokenizer. However, SentencePiece does
not take the number of whitespaces into account, as it escapes all
whitespaces into a single “_” symbol. Since the amount of white-
space carries semantics in Python, we preserve this information by
adding special tokens “<IND>" and “<DED>" into the source code
before passing it to the model. Given a prediction by the model,
PyTy replaces the special tokens in a post-processing step to obtain
syntactically correct Python code.

4.2.4  Validating Fixes via Type Checking. Once trained, we query
the model for a ranked list of the k most likely fixes. To ensure
that a fix suggestion given to a user indeed removes the targeted

5The distribution of type errors is similar to that in our preliminary study (Figure 2),
but not exactly the same because the datasets differ.
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type error, PyTy validates all candidate fixes by running the type
checker on them. If and only if the targeted type error disappears
and no new errors appear, the fix is suggested to the user.

5 IMPLEMENTATION

We fine-tune the t5-base (220M parameters) model of TFix for 30
epochs with a batch size of 32, and then evaluate the model that
has the lowest validation loss on the validation set. The model
converges at the 17th epoch. We follow the default hyperparameters
of TFix [5]. When validating candidate fixes using the type checker,
we sample from the model up to k = 50 predictions to be validated.
Since PyTy validates fix candidates automatically, a user does not
have to inspect these 50 suggestions, but only the first one found
to successfully remove the type error. To fix 281 type errors (i.e.,
our test set, which amounts to a total of 174,586 lines of code) and
automatically check whether the targeted type errors disappear,
PyTy takes in total six hours and 44 minutes, i.e., an average of 86.2
seconds per type error fix. We perform all experiments on a server
with 48 Intel Xeon CPU cores clocked at 2.2GHz, 250GB of RAM,
one NVIDIA Tesla V100 GPU, running Ubuntu 18.04. Most of the
time is spent on running the type checker for validating candidate
fixes.

6 EVALUATION

We evaluate our PyTyDefects dataset and PyTy, our learning-based

type error repair approach, focusing on the following research

questions (RQs):

RQ1 How effective is our automated data gathering at producing
minimal code changes that fix type errors?

RQ2 How effective is PyTy at fixing type errors?

RQ3 How do variants of PyTy compare to the full approach?

RQ4 How does PyTy compare to state-of-the-art APR techniques?

6.1 RQ1: Effectiveness of Automatic Data
Gathering

6.1.1 Data analysis. To validate the effectiveness of automatically
gathering PyTyDefects, two of the authors independently annotate
a random sample of 100 of the 2,766 entries in the dataset. The
sample contains at least one error from each class of type errors
except for “call error”. Each entry is assigned one of three labels:
minimal if the extracted code change fixes a type error and cannot
be further reduced, correct but not minimal if the extracted code
change correctly fixes a type error but is not minimal, and wrong
otherwise.

6.1.2  Results. After independently labeling the 100 entries, the
two annotators initially agree on 89 labels. After discussing the
divergent labels and refining the labels of some entries, there is a
final agreement on 94/100 minimal, 3/100 correct but not minimal,
and 0/100 wrong entries. The remaining three entries with divergent
labels are due to hunks that fix two type errors at once. These entries
are minimal in the sense that a hunk-based reduction algorithm
cannot further reduce them, but they could be further reduced by
a more fine-grained reduction algorithm [18, 41]. The inter-rater
agreement, as given by Cohen’s kappa coefficient [8] is 0.651, which
means a substantial agreement [23].
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basis_from: Basis = None,
basis_to: Basis = None,

I: ndarray = None,

expand: bool = False) -> ndarray:

basis_from: Optional[Basis] = None,
basis_to: Optional[Basis] = None,

I: Optionall[ndarray] = None,

expand: bool = False) -> ndarray:

(a) Commit with multiple type (b) Commit with multiple type

€rrors. error fixes.

Figure 7: Example of a correct (but not minimal) entry in
PyTyDefects.

Table 1: Results of PyTy for each class of type error.

Samples Effectiveness of PyTy

Classes of type errors (test set) Error Exact

removal match
Incompatible variable type 821 (83) 90.4% 65.1%
Incompatible parameter type 600 (60)  80.0% 36.7%
Incompatible return type 296 (30) 73.3% 43.3%
Invalid type 291 (30) 100.0% 83.3%
Unbound name 258 (26) 76.9% 42.3%
Incompatible attribute type 258 (26) 92.3% 73.1%
Unsupported operand 124 (13) 76.9% 38.5%
Strengthened precondition 59 (6) 83.3% 50.0%
Weakened postcondition 51 (6) 50.0% 0.0%
Call error 8 (1) 100.0% 100.0%
Total 2,766 (281) 85.4% 54.4%

As an example of a minimal type error fix, recall hunk H1 from
the previously discussed commit in Figure 6. All changes in hunk
H1 are necessary for fixing the type error. Figure 7 shows an exam-
ple of a correct but not minimal reduced commit, which includes
some changes not relevant to fixing the type error.!® A single hunk
updates multiple parameter type annotations of the same function.
However, only one code change is relevant to fixing the type error
reported for basis_to, which should be annotated Optional[Basis]
instead of Basis, as it is initialized to None.

Answer to RQ1: The automated data gathering yields type error
fixes that are mostly correct (97/100) and minimal (94/100), i.e.,
PyTyDefects provides a solid basis to train and validate PyTy.

6.2 RQ2: Effectiveness of PyTy

We evaluate the effectiveness of PyTy on all ten classes of type errors
covered by our test set. We configure the approach to consider up
to k = 50 candidate fixes. Note that users do not have to manually
check all candidate fixes, but only see the first successful fix.

6.2.1 Metrics. We use two metrics to evaluate the effectiveness of
PyTy. First, we compute the error removal rate, i.e., how often the
approach succeeds at finding a fix that removes the targeted type
error without introducing new type errors. Second, we compute
the exact match rate, i.e., how often the model output is identical to
the fix committed by the developer. This metric underapproximates

Lohttps://github.com/kinnala/scikit-fem/commit/a555ca3
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vprint(f"{prefix} {lineno}: {action_name}
Constrain Mouse: {'yes' if constraint > @
else ('no' if constrained == @ else 'check stack')}")

(a) Code with type error.

vprint(f"{prefix} {lineno}: {action_name}
Constrain Mouse: {'yes' if constraint > @
else ('no' if constraint == @ else 'check stack')}")

(b) Fix by the developer.
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vprint(f"{prefix} {lineno}: {action_name}
Constrain Mouse: {'yes' if constraint > @
else ('no' if constraint == @ else 'check stack')}")

(c) Fix suggested by PyTy.

Figure 8: Exact match of fix for type error “Unbound name: Name constrained is used but not defined in the current scope”.

string = _fmt(string)
return lib.TCOD_console_get_height_rect_fmt(
self.console_c, x, y, width, height, string)

(a) Code with type error.

return lib.TCOD_console_get_height_rect_fmt(
self.console_c, x, y, width, height, _fmt(string))

(b) Fix by the developer.

byte_string = _fmt(string)
return 1ib.TCOD_console_get_height_rect_fmt(
self.console_c, x, y, width, height, byte_string)

(c) Fix suggested by PyTy.

Figure 9: Correct fix different from the developer-provided fix for type error “Incompatible variable type: string is declared to

have type str but is used as type bytes”.

3 3
F5_DEVICE_TYPE: { F5_API_DEVICE_TYPE: {
DEVICE_CLASS_KEY: F5Device,

(a) Code with type error.

DEVICE_CLASS_KEY: F5Device,

(b) Fix by the developer.

3,
DEVICE_TYPE: {
DEVICE_CLASS_KEY: F5Device,

(c) Fix suggested by PyTy.

Figure 10: Fix predicted by the neural model, but not suggested to the user, as the type error “Unbound name: Name F5_DEVICE_TYPE
is used but not defined in the current scope” would still exist for DEVICE_TYPE.

global Bot
if self is Bot:

global Bot
if self is Bot:

global Bot
if self is Bot:

assert isinstance(new, BotUser)

Bot = new Bot = new

(a) Code with type error.

(b) Fix by the developer.

new_Bot = new

(c) Fix suggested by PyTy.

Figure 11: PyTy-suggested fix that removes the error “Incompatible variable type: Bot is declared to have type BotUser but is
used as type User”, while changing the behavior in an unintended way.

the abilities of PyTy, as there might be fixes that address the type
error in a reasonable way that differs from the original fix.

6.2.2 Quantitative Results. Table 1 shows the number of samples
used for training and testing, the error removal rate, and the exact
match accuracy. Each row in the table corresponds to one kind
of type error reported by the type checker. PyTy successfully re-
moves the type error in 85.4% of the cases, and it finds exactly the
developer-provided fix for 54.4% of all errors. Comparing different
kinds of type errors, we find the approach to be effective across
a wide range of errors. An exception are Weakened postcondition
errors, which are often caused by type-incorrect, overriding meth-
ods in custom classes, i.e., a kind of mistake that requires non-local,
project-specific information to be fixed.

6.2.3 Examples. We illustrate the strengths and limitations of PyTy
with four representative examples. Figure 8 shows an exact match
of the developer fix.!” The error is because the variable constrained
used in the format string is not defined. PyTy successfully fixes the
mistake by replacing constrained with constraint, which exactly
matches the developer’s fix.

The example in Figure 9 fixes the type error in a way that matches
the intention of the developer but differs from the original fix.'® The

https://www.github.com/DragonMinded/bemaniutils/commit/438a3da
Bhttps://github.com/libtcod/python-tcod/commit/60066£3

developer fix directly passes the byte string _fmt(string) as an ar-
gument to the function 1ib.TCOD_console_printf_ex, avoiding the
error caused by re-assigning the byte string to the variable string,
which is previously annotated as type str. The PyTy-suggested fix
instead declares a new variable byte_string for the byte string, and
passes it to 1ib.TCOD_console_printf_ex as an argument.

Figure 10 shows a predicted fix that fails to remove the type
error.!” The developer fix uses a variable (F5_API_DEVICE_TYPE) im-
ported from another package. However, since the context code
and the error message do not give any hint about the identifier to
use, the model simply replaces it with DEVICE_TYPE. Because PyTy
validates that a fix candidate removes the type error before report-
ing the fix to the user, this fix suggestion is not shown to users,
highlighting the importance of validating fix candidates.

Finally, Figure 11 fixes the type error but changes the semantics
of the code in an unintended way.?® The error is because Bot and
new, which is a variable, have incompatible types. The developer
fixes the error by asserting that new is of type BotUser. PyTy instead
suggests a fix that declares a new variable new_Bot, which however
fails to update the global Bot variable. We include this example to
show that PyTy is limited by relying on the type checker as the only

https://github.com/networktocode/pyntc/commit/ebb35344e0121
Dhttps://www.github.com/lykoss/lykos/commit/abbd35¢
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Table 2: Ablation study and comparison with LLMs.

Error removal (%) Exact match (%)

Approach Top-1 Top-5 Top—SO‘Top—l Top-5 Top-50

No pre-training 473 573 71.2| 302 452 48.8
Vanilla TFix 46 110 16.7 0.0 1.1 1.8
No preprocessing  17.8  23.5 29.5| 37.0 456 54.1
Small TFix model  43.1  63.3 79.0| 327 4438 53.0

text-davinci-003 21.7 278 346| 146 18.1 20.9

gpt-3.5-turbo 219 238  260| 103 121 145
gpt-4 341 367  39.1| 189 221 264
Full PyTy 509 662 854| 37.7 480 544

validation mechanism. Future work could address this limitation
by further validating fixes by running a test suite.

6.2.4 Type Fixes in the Wild. To further validate the usefulness
of PyTy in practice, we create pull requests with PyTy-suggested
fixes for type errors. We run Pyre on different GitHub projects
randomly picked among the projects in PyTyDefects. In total, we
create 30 pull requests (for 17 incompatible variable type errors,
ten incompatible parameter type errors, and three invalid type
errors). By the time of this writing, 20 of the pull requests have
been merged, six are still open, and four are closed. For the pull
requests merged so far, the developers generally were grateful about
the changes. In one case, the developers even asked us to apply
similar fixes in other code locations, which we did, as we could use
PyTy-suggested fixes there as well. The four closed pull requests
are: (i) two cases where the developers prefer to use type casts and
dynamic type checks rather than updating the type annotations;
(ii) one case where the developers decided to suppress a warning
about an incompatible Optional variable type; and (iii) one case
where the developers consider a warning about an incompatibility

between List[Optional[Path]] and List[None] to be a false positive.

Overall, the developers’ feedback confirms PyTy’s usefulness in
practice.

Answer to RQ2: PyTy successfully removes the type error in
85.4% of the cases evaluated, and it finds exactly the developer-
provided fix for 54.4% of all errors.

6.3 RQ3: Ablation Study of PyTy

We perform an ablation study to evaluate the effectiveness of PyTy
in different configurations. The upper part of Table 2 summarizes
the results discussed in the following.

No pre-training. We train the T5 model directly on PyTyDefects,
i.e., without pre-training the model on the JavaScript APR tasks.
The purpose of this experiment is to check if the knowledge of
fixing JavaScript errors helps in fixing Python type errors. We use
the same experimental setup as discussed in Section 5, except that
training continues beyond 30 epochs because the evaluation loss
keeps decreasing. We train the model for 100 epochs and pick the
model with the lowest validation loss, which is at the 32nd epoch.
The results show that pre-training the model on the JavaScript
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repair task contributes significantly to its effectiveness. For example,
the top-1 exact match rate drops from 37.7% to 30.2% without pre-
training.

Vanilla TFix. We try to predict the fix with the original TFix
model, i.e., without fine-tuning TFix with PyTyDefects. The pur-
pose of this experiment is to check whether gathering a dataset of
type errors is really necessary. This experiment uses the t5-large
(770M parameters) model of TFix because removing fine-tuning
also removes the resource constraints that motivated us to use the
t5-base model (220M parameters). For this experiment, we do not
preprocess the Python source code as the tokenizer of the TFix
model is trained without the special tokens. As shown in Table 2,
the effectiveness drops dramatically, e.g., to only 1.8% exact matches
within the top-50 suggestions. The reasons are (i) that Python and
JavaScript have different syntax, i.e., it is unlikely for the model
to output syntactically correct Python code, and (ii) that the TFix
model is not trained to fix type errors.

No preprocessing. We try to generate a fix without the prepro-
cessing that adds indentation and dedentation tokens (Section 4.2.3).
We use the same experimental setup as discussed in Section 5, but
we remove the special tokens from the input and output code. We
find preprocessing to be important, as otherwise the error removal
rate drops significantly, e.g., from 50.9% to 17.8% in the top-1 pre-
diction. For exact match accuracy, the decrease in effectiveness is
less strong, but the exact match might not be equal to the actual
developer fix, as we ignore the newline tokens and the number of
whitespaces for the comparison.

Small TFix model. To study the impact of the model size, we try
to predict the fix by basing PyTy on the small TFix model (with only
60M parameters). We use the same experimental setup as discussed
in Section 5. As the evaluation loss of this model keeps decreasing
beyond the 30th epoch, we train the model for 100 epochs, which
converges at the 47th epoch. The effectiveness of PyTy is negatively
affected by using a smaller model, e.g., with 43.1% instead of 50.9%
top-1 error removal rate. At the same time, the negative impact
of the small model can be partially compensated by considering
more fix suggestions: For example, the top-50 exact match rate is
reduced only slightly from 54.4% to 53.0%. These results show that
PyTy could also be effective in a resource-constrained setup, such
as a developer laptop instead of a server.

Answer to RQ3: The full PyTy outperforms simpler variants
of the approach, showing that each of PyTy’s components con-
tributes to its effectiveness.

6.4 RQ4: Comparison with Prior Work

6.4.1 RQ4a: PyTy vs. Large Language Models. Fixing type errors
relates to general-purpose APR [25]. The following compares PyTy
with large language models (LLMs), which have been shown to
yield state of the art results [19, 48, 50]. PyTy and LLMs funda-
mentally differ in the sense that PyTy is designed and fine-tuned
specifically for type error repair, whereas LLMs are trained in a
task-independent manner, but typically on much more data.
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Experimental Setup. We compare PyTy with three recent models
offered by OpenAl: text-davinci-003, gpt-3.5-turbo, and gpt-4. Our
prompt consists of five parts: a description of the task, the buggy
code snippet, the type checker’s error message, the line containing
the error, and a description of the expected output format.

Results. The lower part of Table 2 shows the effectiveness of
different models. PyTy clearly outperforms all LLMs in terms of
error removal and finding the exact developer fix. The gpt-4 model,
as the most recent and largest model, is the most effective LLM. The
text-davinci-003 model is slightly more effective than gpt-3.5-turbo,
which may be because the latter is optimized for chat. Manually
analyzing the successful fixes, we notice that the LLMs mostly fix
those errors that can be fixed with a single-token edit. Instead, PyTy
can fix more complex type errors.

Answer to RQ4a: PyTy is more effective than prompting
general-purpose LLMs (54.4% vs. 26.4%).

6.4.2 RQ4b: PyTy vs. PyTER. Instead of targeting statically detected
type errors, the recent PyTER [32] approach repairs bugs that man-
ifest through a TypeError exception. For a comparison, consider the
two subproblems that both approaches address. Subproblem 1 is de-
tecting a type error, done by the static type checker in our approach
and by observing a runtime exception in PyTER. Subproblem 2 is
fixing a detected type error, done by a neural model in our approach
and by applying a set of repair templates in PyTER. How PyTy and
PyTER address subproblem 1 differs fundamentally. While static
type errors manifest without running the code, revealing a runtime
type error require tests cases or a production run that triggers the
error. Moreover, a single type-related problem may manifest at dif-
ferent locations. For example, a function that returns an incorrect
value will manifest as a static type error at the return statement,
but as a runtime type error at a code location that uses the value.
Because of these differences, performing a direct, end-to-end com-
parison is neither possible nor meaningful. Instead, we quantify the
overlap of the two approaches in terms of the errors they address
and the fixes that they could potentially find, which answers four
questions.

PyTER on PyTyDefects. 1) How many of the errors in PyTyDefects
manifest via a runtime type error? We pick a random sample of 30 of
all 281 fixes in our test set and inspect their commit messages. The
inspection shows that for 16/30 fixes, the problem was certainly
found via static type checking, e.g., because the message mentions
the type checker, and for 27/30 fixes, the problem was certainly not
found via a TypeError thrown at runtime. 2) How many of the type
errors in PyTyDefects are in the scope of PyTER’s fix templates? The
repair templates cover three kinds of fixes: adding an instanceof
check, adding a type conversion, e.g., via a call to int(), and adding
code to catch and handle a TypeError exception. We check for each
type error in our test set whether PyTER’s repair templates can be
instantiated into the fix, which shows that 15/281 type errors are in
scope for PyTER, whereas the remaining 266 errors are not covered
by any repair template. Examples of fixes that are out-of-scope for
PyTER are: (i) fixes that change a value, e.g., by modifying a string
"a b c" into an array of strings ["a", "b", "c"1, (ii) fixes that
change a type annotation, e.g., from T to Optional[T], and (iii) fixes
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that add a call to typing.cast(). In summary, PyTER address only
a small fraction of the type errors in our dataset.

PyTy on PyTER’s dataset. 3) How many of the errors in PyTER’s
dataset manifest via a static type error? The Pyre type checker that
PyTy builds on checks (partially) type-annotated code only. Among
the 93 errors in PyTER’s dataset, 16 are in a type-annotated function,
and hence, checked at all, but the type checker does not find the
errors fixed by PyTER. 4) How many of the type errors in PyTER’s
dataset are in the scope of PyTy’s neural model? Our approach focuses
on single-hunk fixes where the type error location is inside the hunk
that needs to be changed. While these assumptions commonly
hold for static type errors (Section 3), only 11/93 errors in PyTER’s
dataset match our assumptions. In summary, PyTy addresses only
a small fraction of the type errors in the PyTER dataset.

Answer to RQ4b: Our approach and PyTER [32] are comple-
mentary in the sense that they address type errors that manifest
in different ways and that they apply different kinds of fixes.

7 DISCUSSION AND THREATS TO VALIDITY

Python repositories. We select popular projects for our dataset,
because recent work finds such projects to contain type annota-
tions and type errors [9]. A different set of repositories could yield
different results, in particular for the preliminary study (Section 3).

Limitations of static type checking. PyTy builds upon the Pyre
type checker, which, as all static type checkers, may suffer from
false positives and false negatives. A false positive, where the type
checker incorrectly reports a type error in correct code, may lead
to unnecessary code modifications by PyTy. Conversely, a false
negative, where an error goes unnoticed by the type checker, may
cause PyTy to suggest a fix that does not really solve the problem,
or even worse, introduces a new problem. As a lower bound on
PyTy’s effectiveness despite these limitations, we find that 54.4%
of the predicted fixes exactly match the developer’s fix. Other type
checkers than Pyre may find different kinds of type errors and pro-
vide different kinds of hints for fixing them. Because our approach
uses the type checker as a black-box, adapting our implementation
to support another type checker seems straightforward.

Type annotations. Because the type checker reports errors only
in functions that are at least partially type-annotated, PyTy cannot
fix errors in completely unannotated code. Despite this limitation,
there is evidence that more and more code gets type-annotated,
and hence, is in scope for PyTy. For example, a recent study on
the evolution of type annotations [9] finds 50 type annotations
per 1,000 lines of code and an increasing trend on the adoption of
type annotations. Moreover, our dataset of thousands of real-world
commits that address type errors shows that developers care about
such errors. Finally, as described in Section 1, large companies,
such as Google, Dropbox, and Meta, are actively working toward
type-annotating their Python code bases.

Type errors. PyTyDefects, containing 2,766 real-world type error
fixes, is filtered to contain only errors fixable with a single-hunk
code change, and we cannot draw any conclusions about more
complex fixes. As shown in Section 3.2.2, many real-world fixes are
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local edits, which has motivated our design decision to focus on
single-hunk fixes. The distribution of error classes in PyTyDefects
reflects the errors that occur in practice, and does not cover all error
classes that the type checker may find. Thanks to the data-driven
design of PyTy, the approach should be able to fix further classes
of type errors when given corresponding training data.

Future work. We plan to improve the error localization and will
try different prompts to improve the performance of LLMs. More-
over, we plan to fine-tune different models beside TFix and apply
PyTy to more classes of type errors. Finally, we plan to integrate
our approach into an IDE.

8 RELATED WORK

Automated program repair. Earlier APR approaches [25] can be
classified into heuristic repair, e.g., based on the generate-and-
validate method [21, 24], and constraint-based repair, which syn-
thesizes a patch based on constraints [29, 31]. Both techniques rely
on test suites, and hence, may suffer from overfitting [36]. PyTy
belongs to a more recent stream of work on learning-based repair.
In contrast to the above techniques, PyTy does not require tests but
uses a static type checker to validate candidate fixes. Other learning-
based approaches include DrRepair [52], which fixes C compilation
errors, Hoppity [10], which represents fixes as a sequence of graph
edits, and Recoder [56], based on TreeGen [42], which proposes a
syntax-guided edit decoder. Compared to these GNN-based models,
our approach uses a text-to-text transformer, which is easy to apply
to any language. Other text-based models include SequenceR [6]
and work by Tufano et al. [43]. Vasic et al. [44] propose to jointly
localize and repair bugs. These approaches neither benefit from
pre-training nor target Python type errors. CoCoNut [26] combines
multiple models using ensemble learning. Instead, our approach
learns how to fix all error types in one model. Ye et al. incorpo-
rate feedback from compiling and executing tests to train a repair
model [53], an idea that could also be adapted to type error re-
pair. Finally, motivated by recent results that show general-purpose
LLMs to provide competitive results [19, 48—50], we empirically
compare PyTy with three LLMs (Section 6.4.1).

We are aware of two APR approaches that target type errors.
Rite [39] is a template-based, data-driven approach for type er-
rors in OCaml. Their approach builds on a specifically designed,
AST-based representation of fixes, while our approach uses textual
inputs and outputs. PyTER [32] is a test-based APR approach to fix
runtime type errors in Python, which we empirically compare with
in Section 6.4.2. Their work and ours address related but ultimately
different problems: PyTER requires test cases that trigger a run-
time type error, but tests may not exist at all or have low coverage
(e.g., Gruber et al. [15] report a median coverage of 3.7% across
22k Python projects). In contrast, our work addresses statically
detectable errors, and hence, is limited to errors that are statically
detectable. In practice, we expect PyTER and PyTy to complement
each other. Beyond type errors, several techniques for fixing other
kinds of static analysis warnings have been proposed [3, 12, 28],
which are also complementary to our work.

Type annotations and type errors. Several techniques predict
types via deep learning [1, 17, 27, 30], sometimes augmented with
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search-based validation of predicted types [34] or static type infer-
ence [33]. While these approaches focus on predicting correct types,
PyTy addresses the complementary problem of fixing type-related
errors. Di Grazia and Pradel [9] show that adding type annotations
to a code base often reveals statically detectable type errors, but
that developers often do not find time to fix these errors. Other
studies investigate the impact of using type checkers in Python [20],
compare different type checkers with each other [38], and provide
evidence that static typing may reduce the bug fixing effort [55].
Both Di Grazia and Pradel [9] and Rak-amnouykit et al. [38] report
that type-annotated repositories rarely type-check, showing the
need for an APR tool for Python type errors, such as PyTy.

Transfer learning on code. Pre-trained models for source code,
e.g., CodeBERT [13], GraphCodeBERT [16], CodeT5 [46] and Code-
Trans [11], achieve promising results [45]. Following this paradigm,
we build on TFix because it is already trained on an APR task. An-
other work that applies transfer learning in language models of
code is VRepair [7]. They pre-train a transformer model on a large
bug fix dataset for C, and then fine-tune it with a vulnerability
fix dataset for C. Our work shows that the benefits of transferring
knowledge not only between different fixing tasks, but also between
different programming languages.

Delta debugging. Delta debugging [54] finds failure-inducing
code hunks in a commit, and is widely used, e.g., for fault localiza-
tion [47]. We treat hunks that fix type errors as “failure-inducing”,
which is similar to prior work [4] but adopted to type errors.

9 CONCLUSION

This paper presents PyTy, the first automated repair technique tar-
geted specifically at statically detectable type errors in Python. The
design of the approach is motivated by the findings of a preliminary
study. To generate a relevant dataset, we apply a combination of
delta debugging and type checking, which results in PyTyDefects,
containing 2,766 Python type errors and fixes. We then present
cross-lingual transfer learning, which addresses the problem of
having a small dataset for a deep learning model by fine-tuning
an existing APR model originally trained for another task and lan-
guage. Our evaluation shows the effectiveness of PyTy, e.g., by
providing a fix that removes the targeted type error for 85.4% of
the studied errors. Finally, as of this writing, 20 out of 30 GitHub
pull requests based on PyTy-generated type error fixes have been
merged by developers, demonstrating the usefulness of PyTy in
practice.
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