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Abstract

Test suites are inherently imperfect, and testers can always enrich
a suite with new test cases that improve its quality and, conse-
quently, the reliability of the target software system. However, find-
ing test cases that explore execution scenarios beyond the scope of
an existing suite can be extremely challenging and labor-intensive,
particularly when managing large test suites over extended periods.

In this paper, we propose E-Test, an approach that reduces
the gap between the execution space explored with a test suite
and the executions experienced in production. E-Test (i) identifies
executions that have not yet been tested from large sets of scenarios,
such as those monitored during intensive production usage, and
(ii) generates new test cases that enhance the test suite. E-Test
leverages Large Language Models (LLMs) to pinpoint scenarios
that the current test suite does not adequately cover, and augments
the suite with test cases that execute these scenarios.

Our evaluation on a dataset of 1,975 scenarios, collected from
highly-starred open-source Java projects already in production and
Defects4J, demonstrates that E-Test retrieves not-yet-tested execu-
tion scenarios significantly better than state-of-the-art approaches.
While existing regression testing and field testing approaches for
this task achieve a maximum F1-score of 0.34, and vanilla LLMs
achieve a maximum F1-score of 0.39, E-Test reaches 0.55.

These results highlight the impact of E-Test in enhancing test
suites by effectively targeting not-yet-tested execution scenarios
and reducing manual effort required for maintaining test suites.
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1 Introduction

Test suites are extremely important to guarantee the quality of
software systems [28, 69]. Test suites are inherently imperfect, that
is, they never reveal all bugs in the software system, and can always
be improved, no matter how well maintained they are [30, 33]. Even
mature software systems undergo continuous testing [1, 3, 42]. An
effective quality process of a long-lasting software product requires
test suites that software engineers maintain and evolve throughout
the software lifetime [16, 26, 51, 61].

So far the research about long-lasting testing has focused mostly
on test augmentation, regression and field testing [12, 17, 34]. Test
augmentation and regression approaches remove obsolete test cases,
select, prioritize and filter test cases to control the size of the
suite [25, 29, 37, 40, 48, 67], and augment the suite with test cases
that exercise the modified code [54]. Field testing executes software
systems in the field to reveal failures that emerge only in produc-
tion [9, 24], usually executing test cases that instantiate templates
in the production environment [4].

In this paper we tackle the problem of long-lasting testing from
a different and more ambitious perspective than regression and
field testing. We propose e’er-improving test suites

1, test suites that
automatically improve with data that become available at any time
during the software lifecycle (a major source being data from moni-
toring the execution of the software system in production) to widen
the executions that the test suite exercises, thus increasing the cov-
erage of execution scenarios. We start from the observation that the
execution in production is by far the largest and most complete set
of actual execution scenarios of a software system [7]. We observe
that the execution scenarios from production offer a unique op-
portunity to explore not-yet-tested scenarios. Unfortunately, simply
augmenting the test suite with all the scenarios observed in the soft-
ware lifetime blows up the suite that quickly becomes useless [21].
We argue that it is indeed possible to continuously improve a test
suite, by sifting huge sets of scenarios, like the ones that we obtain

1
E’er is an ancient English term for Ever.
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from monitoring the execution in production, to identify need-test

and error-prone scenarios, and generate test cases from them.
We propose E-Test, an approach that classifies execution scenar-

ios as already-tested, need-test and error-prone with respect to a test
suite, and enriches the test suite with new test cases that exercise
need-test and error-prone scenarios. An execution scenario for a
Software Under Test (SUT) contains the input and the state for the
SUT. The scenario is already-tested with respect to a test suite, if the
input is “equivalent” to a test case in the suite. It is need-test, if there
is “no equivalent test” case in the suite and it succeeds, error-prone
if the method fails.

Classifying scenarios by executing all the test cases is impracti-
cal for industrial-scale software and test suites. E-Test efficiently
classifies scenarios without executing the test cases. Our assump-
tion is that Large Language Models (LLMs) can effectively classify
scenarios without executing all test cases thanks to the huge cor-
pus of public bug reports, issues, code, and tests that belong to the
training data of the LLM. However, the use of vanilla LLMs does
not produce the expected results, as we report in Section 3. E-Test
fine tunes an LLM, defines a set of prompts, queries the LLM with
Retrieval-Augmented Generation (RAG) and merges the results of
querying the LLM, to overcome the limitations and improve the
poor effectiveness of a vanilla LLM.

E-Test effectively classifies the execution scenarios, by investi-
gating four key characteristics that characterize the effectiveness
of a scenario with respect to a test suite: the ability to improve cov-
erage, the uniqueness of the execution of the scenario, the correctness
of the output, and the likelihood of the scenario to reveal a bug.
We carefully engineered a prompt template that assesses an input
execution scenario, by asking five questions about the four charac-
teristics, and we defined a strategy that combines the answers to
the questions, to effectively classify the scenario as already-tested,
need-test or error-prone.

We created a dataset of 1,975 scenarios from both popular Java
projects available on GitHub and extending Defects4J [31]. We used
the dataset to experimentally evaluate both the effectiveness of
E-Test to classify execution scenarios and the sensitivity of E-Test
to different configurations2. The experimental results indicate that
E-Test achieves 0.55 precision, 0.59 recall, 0.55 F1-score, on aver-
age. We compared E-Test to state-of-the-art approaches for both
regression testing and field testing, FAST++ [14] and field-ready

testing [23], respectively. The comparative evaluation indicates that
E-Test outperforms both FAST++ and field-ready testing in terms
of F1-score, with a relative increase of 61.8% with respect to FAST++
and 83.3% with respect to field-ready testing. We automatically gen-
erated test cases for all Defects4J scenarios that E-Test classifies
as error-prone, to check for the effectiveness of E-Test to generate
error-revealing test cases. The generated test cases detect 83.2% of
the failures documented for the considered scenarios in Defects4J.

This paper contributes to state of the art in software testing by:
• spotlighting a novel viewpoint of e’er-improving test suites:
improving test suites by identifying execution scenarios that
can enrich the suite,

2E-Test is available on a replication package at https://github.com/ketaiq/E-Test-
package to facilitate independent replicas of the experiments.

• defining E-Test, an approach that leverages LLMswith prompts,
RAG, fine-tuning, andmerging of the results ofmultiple queries,
to classify scenarios as already-tested, need-test, or error-prone,
and thus to identify new candidate test cases,
• creating a dataset of 1,975 execution scenarios that we har-
vested from both Defects4J and four popular Java projects
available on GitHub, to evaluate E-Test,
• discussing the results of a thorough experimental evaluation
of E-Test across different Java projects, for comparatively
evaluating E-Test with respect to vanilla LLMs and state-of-
the-art regression and field testing approaches,
• presenting a test case generator from execution scenarios, and
evaluating the ability of E-Test to reveal failures.

The paper is organized as follows. Section 2 defines E-Test and
introduces a running example. Section 3 discusses the experimental
results. Section 4 overviews related work. Section 5 summarizes
the main results and spotlights the open research directions.

2 E-Test

E’er-improving test suites are long-lasting test suites that automat-
ically grow with new test cases that incrementally explore new
partitions of the execution space, that is, exercise behaviors that
the original test suite misses. E-Test automatically identifies test
cases that exercise unexplored behaviors from sets of execution
scenarios, by classifying scenarios as already-tested, need-test or
error-prone. When fed with execution scenarios from production,
E-Test efficiently identifies behaviors that are observed in produc-
tion and not well-tested yet. Thus, it reduces the gap between the
tested and production spaces, that is, the executions that the test
suite exercises and the executions in production.

E-Test works with a SUT, a test suite for the SUT, and the in-
put for the SUT, and indicates whether the input exercises a new
behavior and thus is a good candidate to generate a test case that im-
proves the test suite. The definition of E-Test does not restrict the
application of the approach to a specific testing level. In principle,
E-Test can be instantiated for unit, integration and system testing.
In this paper, we present E-Test for augmenting unit test suites, to
benefit from large and widely used benchmarks for fine-tuning the
core LLM component of E-Test. Adapting E-Test to integration
and system testing requires suitable benchmarks for fine-tuning.

An execution scenario for a method is a tuple ⟨𝐼𝑛,𝑀,𝑇 ⟩, where
𝐼𝑛 is an input for a method𝑀 ,𝑀 is a method with its context data,
and 𝑇 is a test suite for 𝑀 . The context data for a method 𝑀 are
the operations executed to build the objects that method𝑀 uses as
parameters and accesses as external variables, if any. For example,
S is an execution scenario for the method asNode in Spring Boot3:

S = ⟨"[::1]:6379", asNode, T⟩
T = {asNode("127.0.0.1:1111"), asNode("127.0.0.2:2222"),

asNode("127.0.0.3:3333")}
where "[::1]:6379" is the input and T is the test suite for the
method asNode. We use this scenario that led to a failure in pro-
duction (GitHub issue #398194, diagnosed on March 1, 2024) as a
running example in this paper.
3https://github.com/spring-projects/spring-boot
4https://github.com/spring-projects/spring-boot/pull/39819
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An execution scenario ⟨𝐼𝑛,𝑀,𝑇 ⟩ is already-tested, if 𝐼𝑛 is “equiv-
alent” to a test in 𝑇 . Two test cases are equivalent if they belong
to the same partition, from the partition testing viewpoint [53].
We recall that partition testing “divides the infinite set of possible

test cases into a finite set of classes (partitions), with the purpose of

drawing one or more test cases from each class” and that each par-
tition groups test cases with uniform behavior, that is, test cases
that exercise the same portion of the program, according to some
test case selection criterion [50]. The identification of partitions
depends on the test case selection criterion. In our experiments, we
refer to a combination of structural and functional criteria that lead
to the definition of the set of heterogeneous queries.

An execution scenario ⟨𝐼𝑛,𝑀,𝑇 ⟩ is either need-test or error-prone,
if 𝐼𝑛 is “not equivalent” to a test in𝑇 for𝑀 , and𝑀 either succeeds or
fails when executed with 𝐼𝑛, respectively. Already-tested scenarios
increase the size of the suite without enriching it. Need-test sce-
narios enrich the test suite by sampling not-yet-tested partitions,
thus augmenting the quality of the test suite. Error-prone scenarios
reveal bugs to be pruned from the code.

The example scenario S executes the method asNode with an in-
put IPv6 address ("[::1]:6379"), an IP format that is not exercised
with the test cases in T that use the IPv4 format (x.x.x.x:xxxx).
The method asNode fails in this scenario, due to a parsing error,
as documented in the GitHub issue. Thus, the scenario S is error-
prone, since it exercises a scenario different from the scenarios that
the suite exercises, and causes the method to fail. The scenario
⟨"127.0.0.1:5678", asNode, T⟩ is already-tested with respect to
the test suite T , since it exercises executions that the tests in T
already exercised, and the method asNode does not fail with the
input "127.0.0.1:5678". We observe that the scenario S becomes
need-test for the method asNode after fixing the bug, since it exer-
cises an execution that the tests in T do not exercise, and the fixed
method does not fail.

Figure 1 illustrates the three phases of E-Test: PreProcessor,
Analyzer, and PostProcessor. The PreProcessor builds the
prompts for the Analyzer from the execution scenario. The Ana-
lyzer queries an LLM to answer the prompt. The PostProcessor
classifies the input scenario as already-tested, need-test, or error-
prone, and generates test cases for both need-test and error-prone

scenarios.

2.1 PreProcessor

The PreProcessor generates a structured prompt by combining
a Selector and a Builder . The Selector collects the MUT Input , the
MUT , and the MUT Tests. The Builder builds the prompt by instan-
tiating a template on the three items and the queries.

Selector. The Selector mines three essential items from the input ex-
ecution scenario: theMethod Under Test MUT (less than 3K tokens,
to comply with the LLMs we currently use in our experiments), the
MUT Tests (less than 4K tokens), and the MUT Input (less than 1K
tokens). Selecting the items with upper bounds is important to both
match the maximum context length of the LLM and optimize the
cost of the query that depends on the number of tokens [57]. Fig-
ure 2 shows the MUT , MUT Tests and MUT Input that the Selector
produces for scenario S.

TheMUT is the code snippet relevant for understanding the focal
method𝑀 : the signature and body of𝑀 , and the strongly related
methods that𝑀 directly invokes and that belong to the same Java
class of𝑀 . Selector retrieves such code snippet with JavaParser [55]
to statically collect Java code within the method call dependency
graph. Selector selects the MUT Tests as the set of test cases that
directly or indirectly (within 3 nested calls) execute𝑀 from the test
suite of the class of𝑀 . We truncate the characters of the test suite to
4K tokens to fit LLM’s context limit. Selector collects theMUT Input ,
that is, the parameters and the surrounding context code of the call
to𝑀 , from the Java bytecode with ASM5, a popular framework for
instrumenting bytecode [36]. The Java instrumentation is not the
only possible strategy to collectMUT Input , but it is also possible to
integrate with different carving techniques [22]. Selector compares
the signature of𝑀 with the instrumented methods to retrieve the
direct method call, encoded as a string. It extends the method call
string with the surrounding context, that is, the code within the
ten lines both before and after the method call.

The information about the context of the method is extremely
useful for the LLM to understand the invocation. For example, Se-
lector builds the MUT Input of method solve in Defects4J, by aug-
menting the method call solver.solve(f, Math.PI, 4)with the
statements UnivariateRealFunction f = new SinFunction()
and UnivariateRealSolver solver = new BrentSolver(), the
code snippets that Selector extracts from the surrounding context
code of solve, and that build the actual parameters of the call.

Builder. The Builder instantiates the five sections of the Template

by augmenting MUT , MUT Tests and MUT Input that the Selector
produces with Task and Queries. The five sections in Figure 2
shows the Template that the Builder produces for scenario S:
MUT: The source code of the method asNode(String node),

which is the method under test𝑀 .
MUT Tests: The test suite of asNode, that Selector extracts from

the suite of Class PropertiesRedisConnectionDetails, that
includes asNode.

MUT Input: The method call of asNode (String node) with
the input “[::1]:6379” that we ask E-Test to classify. The
simple call in the example does not require context informa-
tion.

Task: The instruction about answering five queries for the LLM:
Given MUT , MUT Tests and MUT Input , we ask LLM to
answer the questions in Queries. For each question, we ask
LLM for a binary Yes or No answer in JSON format.

Queries: The five queries that we ask LLM to answer to assess
MUT Input and that we discuss in the next section.

Queries. We assume that LLMs can effectively infer the characteris-
tics of scenarios, thanks to the huge corpus of public bug reports,
issues, code, and tests that belong to the training data of the LLM.
We formulate the queries about the input scenario, by considering
the aspects of a scenario that are likely related to the execution
space that the suite tests: the similarities of the scenario with re-
spect to the test cases in the suite, the differences of the execution
of the scenario with respect to the behaviors that the suite exercises,
the likelihood of a correct result or failure.

5https://asm.ow2.io/
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Figure 1: Overview of E-Test

Figure 2: A structured prompt for the example scenario S
instantiated by E-Test

We formulate five queries about different although partially
overlapping characteristics.
Q1: Is MUT Input a similar scenario compared with MUT

Tests? This query concerns the logical similarity of the MUT

Input with respect to the scenarios that the suite tests. Thus
it aims to distinguish scenarios that are already tested from
scenarios that deserve to be further tested.

Q2: DoesMUT Input covermore lines or branches thanMUT

Tests? This query complements Q1 by highlighting the differ-
ences in code coverage. The extent to which the MUT Input

exercises new code elements with respect to the MUT Tests

heuristically identifies areas of the code that the suite does
not test yet.

Q3: WillMUT work differently when executed underMUT

Input? This query looks for anomalous behaviors that the
MUT Input reveals. Anomalies in the execution are key ele-
ments that deserve particular attention when testing a soft-
ware.

Q4: DoesMUT still produce correct results when executed

under MUT Input? This query estimates the correctness of
the result of executing the MUT with the MUT Input , and
spotlights scenarios that deserve further testing.

Q5: Will MUT Input reveal any bug in MUT? This query rein-
forces Q4, by stressing the possibility of a failure, by asking
LLMs to focus on potential bugs in the code.

We formulate the queries with heterogeneous answers with
respect to the classification task (the relevant answer for character-
izing the senario as relevant for testing may be positive or negative,
depending on the question), to reduce the risk of LLMs following
a fixed answering pattern, with undesirable biases in the answers.

By mixing the answers that identify each category, we encourage
LLMs to evaluate each query on its own merits. As a result, the
expected answers for classifying a specific scenario are not all Yes
or all No, but a combination of Yes or No.

We define questions that LLM can properly understand and
answer, by looking for terms that might have been extensively
used in the training set of the LLM in many different contexts, and
thus with a meaning that LLM can easily interpret. To this end, we
identified the most suited terms for the queries about software bugs
from Stack Overflow6, by assuming a key role of Stack Overflow in
the training of popular LLMs. We sorted the queries according to
the upvote. We selected all terms that occur in the top 10% queries,
filtered out the stop words, sorted the terms by frequency, and
selected the top terms related to the key terms in the queries. We
obtained similar, cover, line, branch, differently, correct, and reveal.
We use these terms to build the queries.

2.2 Analyzer

The Analyzer queries an LLM to answer the five queries of the
prompt. The answers to the five queries for the prompt correspond-
ing to the scenarioS in JSON format are {Q1: NO, Q2: YES, Q3: YES,
Q4: NO, Q5: YES}. The input is not similar to any test case in the test
suite (Q1: NO), it likely increases the coverage of the test suite (Q2:
YES), it likely works differently from any test case in the test suite
(Q3: YES), it likely does not produce a correct result (Q4: NO), and it
likely reveals a bug in asNode (Q5: YES). E-Test implements LLMs
with fine-tuning [60], and Retrieval-Augmented Generation (RAG)
[35], as illustrated in Figure 1. Here we present the dataset used to
validate E-Test and detail the techniques implemented within it.

Dataset. Our dataset consists of 1,975 execution scenarios that
we obtained by augmenting an initial set of 1,825 scenarios from
Defects4J with 150 scenarios that we mined from GitHub. The
generation of the dataset requires about 180 person-hours, to build
a dataset reusable in further studies.

Defects4J is a popular benchmark with all the information re-
quired to understand, test and replicate software bugs that have
been reported from the field, after software has been publicly re-
leased [31]. We augmented the scenarios that we obtained from
Defects4J with a set of scenarios that we collected by sampling
GitHub, to increase the diversity of the dataset with issues about
additional libraries and projects.

We mined the closed GitHub issues from highly-starred open-
source Java projects (Spring Boot, Apache ShardingSphere, Apache

6https://stackoverflow.com/
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Table 1: The GitHub dataset used in the experiments

Project Version LOC #Classes #Test Suites #Test Cases Avg. Test Cases / Suite Avg. LOC / Suite

Spring Boot 3.1.12 683 988 6 901 2 261 13 328 5 135
Apache ShardingSphere 5.5.0 1 519 076 7 635 1 382 5 867 4 92
Apache Dolphinscheduler 3.2.1 257 915 2 336 469 1 988 4 143
Micrometer 1.11.12 166 565 1 231 385 1 684 4 191

Dolphinscheduler and Micrometer 7). Table 1 shows the statistics of
the GitHub dataset that we used in the experiments (version, LOC,
number of classes, number of test suites, number of test cases, and
averages). We filtered the results by label (bug or defect), creation
date (after 1 January 2020), and number of comments (at least 5). We
carefully selected 50 non-trivial and reproducible bugs that were
triggered due to not-yet-tested inputs.

We created a set of 719 error-prone scenarios ⟨𝐼𝑛,𝑀,𝑇 ⟩ by re-
producing 669 Defects4J bugs8 using the available tests and the
50 bugs from GitHub. We built the need-test scenarios from the
error-prone scenarios by (i) replacing the buggy method𝑀 with the
repaired method, (ii) reproducing the same execution scenario, and
(iii) checking that the test passes. The scenarios that we obtain in
this way are missing execution scenarios by construction, since the
original fault escapes the testing. The scenarios are not error-prone
since we build them with the repaired method.

We completed the dataset with 537 already-tested scenarios that
we obtained by (1) substituting the input 𝐼𝑛 with a new test input
that (i) we generated with Evosuite [20], (ii) is not in the test suite
𝑇 , (iii) succeeds, and (iv) does not increase the branch coverage of
𝑇 , and (2) keeping the buggy 𝑀 . The scenarios that we obtain in
this way do not contribute to improving the test suite.

The final dataset contains 719 error-prone scenarios, 719 need-test
scenarios, and 537 already-tested scenarios. The dataset is available
in the replication package 9.

Fine-tuning. Vanilla LLMs often do not perform well for specific
tasks, due to their general-purpose nature and training [59]. Chow
et al. [13] observe that pretrained LLMs do not usually work best
on code-related tasks, and show that the performance of LLMs im-
proves when the LLMs are fine-tuned. The requirements of software
testing demand a level of precision and contextual understanding
that general LLMs may not provide [57]. Fine-tuning the LLM can
improve its capability to accurately classify execution scenarios.

We fine-tuned the LLM with samples from all the three types
of scenarios: already-tested, need-test, and error-prone. Each sam-
ple consists of a tuple of ⟨Prompt, Responses⟩, where Prompt is the
generated prompt for a scenario ⟨𝐼𝑛,𝑀,𝑇 ⟩, and Responses is the
ground-truth answers to the five queries in JSON format.

We fine-tuned only GPT-3.5 Turbo, since it is one of the best
vanilla LLMs for predicting not-yet-tested scenarios. We fined-
tuned GPT-3.5 Turbo with samples from all 17 projects of Defects4J.
We split the Defects4J part of our dataset into fine-tuning and vali-

dation sets with a 5:95 ratio, and with balanced sets of scenarios of
the three types within the fine-tuning set. We fine-tuned the model

7Spring Boot, ShardingSphere, Dolphinscheduler, and Micrometer on GitHub
8We discarded 166 bugs where MUT or MUT Input exceeded the context limit.
9https://github.com/ketaiq/E-Test-package

with batch size 1, learning rate multiplier 2.0 and 3 epochs using
the balanced fine-tuning dataset.

RAG Retrieval-Augmented Generation. The size limitations of the
prompts of vanilla LLMs do not allow to feed the whole set of
information in the presence of large code and test suites. We imple-
mented RAG to query the LLM with the whole code base, to over-
come the size limitations of the prompts. We built RAG indices for
both the source code and the tests with LlamaIndex10, to feed LLMs
with complete information about the software project. RAG extends
the MUT , MUT Tests, and MUT Input components of the prompt
with code embedding that is strongly related to the prompt in terms
of cosine similarity. We embedded code vectors for RAG querying
with the OpenAI embedding model text-embedding-ada-002.

Few-shot Learning. Vanilla LLMs may not be very precise when
fed with plain prompts only. We augmented the LLM with few-
shot learning [59], by adding fixed already-tested, need-test and
error-prone scenarios that we suitably label, to the head of the
prompt, aiming to improve the knowledge we feed to the LLM. We
experimented with 3-shot, 6-shot and 9-shot learning, that is, with
1,2 and 3 scenarios per type, respectively. The Analyzer queries
the LLM with the fixed scenarios and the corresponding ground
truth answers from the Defects4J dataset.

2.3 PostProcessor

The PostProcessor classifies the scenario as already-tested, need-
test, or error-prone, and generates test cases. The Voter classifies the
scenarios based on the highest number of correct answers among
the five queries, as shown in Table 2. The Voter classifies a scenario
as already-tested if it is similar to the already-tested scenarios (Q1 =
Yes), does not increase the code coverage (Q2 = No), does not work
differently from the test cases in the suite (Q3 = No), produces a
correct output (Q4 = Yes), and does not expose a bug (Q5 = No),
according to the LLM. The Voter classifies a scenario as need-test if
it differs from all the already tested scenario (Q1 = No), increases
code coverage (Q2 = Yes), does not work differently form the test
cases in the suite (Q3 = No), produces a correct output (Q4 = Yes),
and does not expose a bug (Q5 = No), according to the LLM. The
Voter classifies a scenario as error-prone if it differs from all the
already tested scenario (Q1 = No), increases code coverage (Q2 =
Yes), works differently form the test cases in the suite (Q3 = Yes),
produces a wrong output (Q4 = No), and exposes a bug (Q5 = Yes),
according to the LLM.

The Voter classifies a scenario according to the highest number
of answers that match the values in Table 2. The mismatch of the
answer with respect to the expected values in Table 2 may depend
10https://www.llamaindex.ai/
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Table 2: Truth table for each query and scenario

Scenario Q1 Q2 Q3 Q4 Q5

Already-tested Yes No No Yes No
Need-test No Yes No Yes No
Error-prone No Yes Yes No Yes

on the inaccuracy of the prediction in the answers and the fading
boundary between executions and imperfect matching, for instance,
a need-test scenario may derive from a test that is dissimilar to the
existing ones even if it is not likely to cover new code. The Voter
solves ties with the priority error-prone > need-test > already-tested,
to ensure not to miss scenarios that cannot be clearly classified,
thus privileging the robustness over the size of the suite.

The Test Case Generator generates JUnit test cases for the MUT

from the identified not-yet-tested scenarios, by continuing the con-
versation with the LLM.

For example, the Voter correctly classifies the scenario S as
error-prone, since the Analyzer answers ⟨NO, YES, YES, NO, YES⟩.
E-Test augments the original test suite T with a new test case that
reveals the bug.

3 Experimental Validation

Research Questions

We experimentally evaluate E-Test to answer the following re-
search questions (RQs):
RQ1 Impact of LLMs: What impact does the choice of the

LLM have on E-Test?We compare the impact of different
pre-trained LLMs on E-Test, to measure the contribution of
E-Test over vanilla LLMs.

RQ2 Comparative Evaluation: Is E-Test better than state-

of-the-art approaches?We compare E-Test with state-of-
the-art regression testing and field testing approaches, the
closest approaches to E-Test.

RQ3 Impact of Queries: Do different combinations of queries

impact the F1-score? We evaluate the impact of different
combinations of queries (including a single generic query)
on the results of E-Test, to identify the most effective set of
queries.

RQ4 Efficiency: How efficiently does E-Test process scenar-

ios?We evaluate the efficiency of E-Test in terms of response
time and token consumption of the LLM core, and we compare
the different LLMs that we experimented with.

RQ5 Test Case Generation: Does E-Test generate useful test

cases? We evaluate the effectiveness of the JUnit test cases
that E-Test generates.

Experimental Setup

Implementation. We implemented E-Test in Python and Java, with
GPT family (3.5Turbo, 4Turbo, 4o), DeepSeek R1 family (1.5B, 7B,
14B, 32B and 70B) and Llama3 family (1B, 3B, 8B, and 70B) 11, and
we executed the experiments on an Ubuntu 20.04 cluster with four

11https://openai.com/, https://www.deepseek.com/ and https://www.llama.com/

NVIDIA A100 GPUs, each with 40 GB of VRAM. We prompted GPT-
3.5 Turbo, GPT-4 Turbo and GPT4o with the OpenAI APIs, and
DeepSeek R1 and Llama3 families with Ollama APIs 12 that we de-
ployed locally. We also implemented RAG querying by integrating
LlamaIndex with both OpenAI and Ollama APIs.

In our experiments, we set temperature = 2.0 for E-Test and tem-
perature = 0.75 for the DeepSeek R1 and Llama3 families, because
we obtained the best F1-score with these values, as shown in Figure
4. We set top_p = 1 as OpenAI suggests for GPT models,13 and
top_p = 0.9, top_k = 40 for DeepSeek R1 and Llama3 families, as the
Ollama documentation suggests.14 We ran each experiment three
times and report the average scores. Three repetitions are widely
used in the software engineering literature as a pragmatic compro-
mise between statistical reliability of the results and computational
cost [63, 64].

The fine-tuning process of E-Test took 684 seconds (11 minutes)
with OpenAI fine-tuning API. The RAG indexing of the complete
Java code base took on average 0.24 seconds per 1,000 lines of
code when experimented on our dataset. Both fine-tuning and RAG
indexing are one time effort only, and both are reasonably efficient.

Metrics. We evaluate the classification in terms of precision, recall,
and F1-score for each class of scenarios (already-tested, need-test,
and error-prone). We compute precision and recall with respect
to the ground truth. We compute the score for a given class (for
instance already-tested), by considering the other two classes (for
instance need-test and error-prone) as negative samples.We compute
the F1-score across all the three predicted classes, that is, the average
of the three F1-scores associated with each class. All these metrics
have been computed with the scikit-learn library.15 We also record
the inference time and consumed tokens of all examined LLMs.

Table 3 presents the results of our experiments that address RQ1
and RQ2. The Table reports precision (P), recall (R), and F1-score
(F1) for each class of scenarios, already-tested (columns Already-
tested), need-test, (columns Need-test) and error-prone (columns
Error-prone). Columns Not-yet-tested groups need-test, and error-

prone scenarios, and presents the average F1-score for the two
classes that are relevant for testing (Column Not-yet-tested/Avg. F1).
The last column (Total Avg. F1) reports the average F1-score for the
whole set of scenarios.

3.1 RQ1: Impact of LLMs

RQ1 investigates the impact of LLMs on E-Test. The RQ1 rows
(label RQ1 in the first column) report the results of experimenting
with vanilla LLMs (label Vanilla in the second column), few-shot
learning (label Few-shot learning) and RAG (label RAG). The vanilla
experiments classify the input scenarios by instantiating the LLM
of Analyzer with GPT family (3.5Turbo, 4Turbo, 4o), DeepSeek R1
family (1.5B, 7B, 14B, 32B and 70B) and Llama3 family (1B, 3B, 8B,
and 70B). The results are reported in the rows with the correspond-
ing labels in the third column of the table. The experiments with
GPT-4 Turbo augmented with combinations of 3, 6 and 9 shots as
the LLM of the Analyzer are reported in the rows labeled Few-shot
12https://github.com/ollama/ollama
13https://platform.openai.com/docs/api-reference/responses/create
14https://github.com/ollama/docs/api.md
15https://scikit-learn.org/

https://openai.com/
https://www.deepseek.com/
https://www.llama.com/
https://github.com/ollama/ollama
https://platform.openai.com/docs/api-reference/responses/create#responses-create-temperature
https://github.com/ollama/ollama/blob/main/docs/api.md
https://scikit-learn.org/
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Table 3: Precision (P), Recall (R), F1-score (F1) for different models and configurations

Approach

Not-yet-tested Total

Already-tested Need-test Error-prone Avg. Avg.

P R F1 P R F1 P R F1 F1 F1

RQ1

Vanilla

Llama3 1B 0.29 0.80 0.43 0.39 0.11 0.17 0.40 0.16 0.22 0.19 0.27
Llama3 3B 0.20 0.00 0.00 0.36 0.33 0.34 0.37 0.68 0.48 0.41 0.28
Llama3 8B 0.26 0.19 0.22 0.36 0.51 0.42 0.36 0.27 0.31 0.37 0.32
Llama3 70B 0.18 0.29 0.22 0.34 0.28 0.31 0.28 0.19 0.23 0.27 0.25
Deepseek R1 1.5B 0.27 0.49 0.35 0.35 0.19 0.24 0.38 0.33 0.35 0.30 0.31
Deepseek R1 7B 0.18 0.12 0.14 0.36 0.44 0.39 0.36 0.40 0.38 0.38 0.30
Deepseek R1 14B 0.31 0.51 0.37 0.41 0.21 0.27 0.38 0.38 0.38 0.32 0.34
Deepseek R1 32B 0.21 0.22 0.20 0.36 0.40 0.38 0.34 0.30 0.31 0.34 0.30
Deepseek R1 70B 0.24 0.56 0.33 0.35 0.10 0.14 0.34 0.27 0.28 0.21 0.25
GPT-3.5 Turbo 0.26 0.10 0.15 0.35 0.64 0.46 0.36 0.23 0.28 0.37 0.30
GPT-4 Turbo 0.17 0.20 0.18 0.34 0.56 0.42 0.31 0.07 0.11 0.26 0.24
GPT-4o 0.19 0.33 0.24 0.32 0.38 0.16 0.37 0.10 0.35 0.25 0.25

Few-shot learning

GPT-4 Turbo (3-shot) 0.19 0.24 0.21 0.35 0.52 0.42 0.32 0.09 0.14 0.28 0.26
GPT-4 Turbo (6-shot) 0.15 0.19 0.17 0.35 0.55 0.43 0.32 0.08 0.13 0.28 0.24
GPT-4 Turbo (9-shot) 0.17 0.24 0.20 0.34 0.54 0.42 0.30 0.04 0.07 0.24 0.23

RAG

Llama3 8B𝑅𝐴𝐺 0.23 0.28 0.26 0.43 0.51 0.47 0.53 0.37 0.44 0.41 0.39
Llama3 70B𝑅𝐴𝐺 0.22 0.51 0.30 0.34 0.22 0.27 0.62 0.32 0.42 0.35 0.33
GPT-3.5 Turbo𝑅𝐴𝐺 0.19 0.08 0.11 0.42 0.71 0.53 0.60 0.40 0.48 0.51 0.37
GPT-4 Turbo𝑅𝐴𝐺 0.15 0.34 0.21 0.31 0.33 0.32 0.55 0.11 0.19 0.26 0.24
Deepseek R1 70B𝑅𝐴𝐺 0.18 0.29 0.22 0.29 0.24 0.26 0.52 0.45 0.48 0.37 0.32

Baseline Random Classifier 0.36 0.33 0.35 0.36 0.33 0.34 0.28 0.33 0.30 0.33 0.33

RQ2 State-of-the-art
Cruciani et al. [14] 0.32 0.32 0.32 0.27 0.27 0.27 0.44 0.44 0.44 0.35 0.34
Gazzola et al. [23] 0.50 1.00 0.67 0.00 0.00 0.00 0.18 0.33 0.23 0.12 0.30

Fine-tuning
E-Test 0.67 0.94 0.78 0.49 0.26 0.34 0.49 0.58 0.53 0.43 0.55

E-Test𝑅𝐴𝐺 0.47 0.41 0.44 0.51 0.61 0.56 0.52 0.46 0.49 0.53 0.50

learning in the second column. The experiments of the LLM with
RAG are reported in the RAG rows of Table 3. The last row of the
RQ1 section of the table (label Baseline in the second column) re-
ports the results we obtained with a random classifier (i.e., each
type of scenarios has equal probability), which we implemented
with scikit-learn library that we executed ten independent times
on the same dataset.

The results indicate that the vanilla LLMs do not significantly
improve over the random classifier. Only two LLMs (Llama3 1B
and Deepseek R1 14B) perform slightly better than the random
classifier for already-tested scenarios. Some LLMs perform better
than the random classifier for the Not-yet-tested scenarios, but the
total average F1-score of the LLMs is consistently lower than the
baseline except for Deepseek R1 14B (+1%). Overall, Llama3 8B and
GPT-3.5 Turbo perform equally well in identifying not-yet-tested
scenarios.

The Few-shot learning rows of the table report the results of
augmenting GPT-4 Turbo with few-shot learning, which does not
improve the results, and we did not invest further effort on few-shot
learning.

The RAG rows of the table report the results of experimenting
with RAG. The F1-scores indicate that RAG only marginally im-
proves the results of the LLMs. RAG obtains the best results with
Llama3 8B with an F1-score that improves from 32% to 39%. We
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Figure 3: Total Avg. F1-score on large test suite for the LLMs

terminated the experiments with GPT-4 Turbo, since the experi-
ments with RAG are extremely expensive and we decided to stop
experimenting, once we had evidence of the relatively small impact
of RAG. The test suites of the scenarios in our dataset contain 68
test cases on average, and only 6.6% scenarios of our dataset include
test suites with more than 16K tokens, which largely exceed the
context window of LLMs, and thus benefit from RAG. Therefore,
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Figure 4: Inverse-scaling behaviour on E-Test

the results with RAG may underestimate the contribution of RAG.
Figure 3 compares the F1-scores of various LLMs prompted with
and without RAG, computed only on scenarios with a large test
suite that is larger than 16K tokens. The diagrams in the figure
show the relevance of RAG to scale up. The overall F1-scores gain
at least a 12% improvement with RAG.

The last two rows of the table (label Fine-tuning in the second
column) report the results of experimenting with E-Test that fine
tunes GPT-3.5 Turbo, one of the LLMs that performs the best ac-
cording to our experimental evaluation. The E-Test fine-tuning of
GPT-3.5 Turbo largely improves the total average F1-score, with an
overall 80% relative improvement, and significant gains for already-
tested (+63%) and error-prone (+25%) scenarios. We argue that the
relative drop of the F1-score for need-test scenarios is an acceptable
consequence of the improved alignments of E-Test for the scenar-
ios of the other types. E-Test largely improves over the random
classifier as well, with a 66.6% relative improvement of the overall
F1-score.

The results of E-Test with and without RAG (rows E-Test𝑅𝐴𝐺
and E-Test, respectively) confirm the relatively small impact of
RAG on the LLMs in this context. E-Test𝑅𝐴𝐺 works best for Not-
yet-tested scenarios (Avg. F1 53%) and specifically for need-test
scenarios (F1 56%), while E-Test works best for both already-tested

and error-prone scenarios (F1 78% and 53%, respectively).
The large improvement of E-Test for already-tested scenarios

(78% F1-score, more than double than both the random classifier
and all LLMs) paired with the best F1-score for error-prone scenar-
ios indicate that E-Test can indeed largely improve the test suite
without a combinatorial explosion of the suite.

We ran an inverse-scaling experiment on two families ofmodels—
Deepseek R1 (1.5B, 7B, 14B, 32B and 70B) and Llama3 (1B, 3B, 8B and
70B)—using different temperatures (0.0, 0.75, 1.50 and 2.00), with
top_p = 0.9 and top_k = 40. Figure 4 shows the average F1-score
of each model with various temperatures. E-Test outperforms all
LLM models with the best F1-score of 0.55 ± 0.01 over 3 repetitions
with temperature = 2. E-Test also maintained an average F1-score
of 0.52 ± 0.03 across 4 various temperatures. The slight variance
of the average F1-score of E-Test (the tiny shadow around the
diagram in Figure 4) shows the stable performance of E-Test.

The experiments indicate that smaller LLMs outperform large
models (70B) for all temperatures. The Deepseek R1 14B model
achieves the best F1-score of 0.34 ± 0.01 with temperature = 0.75
higher than the best F1-score of 0.28 ± 0.05 with temperature = 2
of the 70B model. Similarly, the Llama3 8B model achieves the best
F1-score of 0.32± 0.00 with temperature = 0.75 higher than the best
F1-score of 0.25 ± 0.00 with temperature = 2 of the 70B model. We
argue that the results may depend on the frequencies of the types
of test cases in the training set, the phenomenon that McKenzie
et al. indicate as “unwanted imitation”[41]: there may be a higher
percentage of already-tested than not-yet-tested in large training
sets, and this may impact the performance of the models.

RQ1 Findings: The LLM does have an impact on E-Test. E-Test
(fine-tuned GPT-3.5 Turbo) outperforms the random classifier
baseline, and performs best among the LLMs we evaluated for
this task, with potential improvements with RAG for large test
suites.

3.2 RQ2: Comparative Evaluation

RQ2 investigates the improvement of E-Test over the state of the
art. We compare E-Test against techniques for improving the qual-
ity of a test suite: FAST++ and field-ready testing.

FAST++ reduces the size of a regression test suite without execut-
ing the test cases: It converts the test cases of the suite to vectors
with Term Frequency-Inverse Document Frequency (TF-IDF), clus-
ters the vectors with K-means, and reduces the suites to the test
cases in the 𝐾 centers of the clusters. We classified all the scenarios
⟨𝐼𝑛,𝑀,𝑇 ⟩ in our dataset, as already-tested, need-test and error-prone
using the inverse order of the prioritization of FAST++. Row Cru-
ciani et al. [14] in block RQ2 of the table reports the results. E-Test
outperforms FAST++ for all indexes, but for the recall of need-test,
where FAST++ performs only slightly better (57% over 54%). The
large gap of the Total Avg. F1 (50% and 54% for E-Test𝑅𝐴𝐺 and
E-Test over 34% for FAST++) confirms the improvement of E-Test
over FAST++.

The field-ready testing approach of Gazzola et al. [23] generates
test cases from scenarios that emerge in production. It selects the
scenarios that deserve further testing with a grammar-based mecha-
nism, and instantiates parametric test case templates for the selected
scenarios. We experimented with the trigger that [23] report as
best performing (1.4%). We classified the scenarios that field-ready
testing selects from the Defects4J dataset to generate test cases as
error-prone, and the scenarios that field-ready testing does not select
as already-tested. The field-ready testing approach of Gazzola et al.
does not allow distinguishing need-test from error-prone scenarios.
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Figure 5: Impact of Query combinations on F1-score (1-2-3
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E-Test outperforms the field-ready testing approach for all indexes,
but for the recall of need-test, where field-ready testing does not miss
any already-tested scenarios, due to the very low optimal trigger
that [23] choses to minimize the probability of missing interesting
test cases. The 94% result of E-Test is only slightly worse. The
large gap of the Total Avg. F1 (50% and 54% for E-Test𝑅𝐴𝐺 and
E-Test over 30% for field-ready testing) confirms the improvement
of E-Test over field-ready testing.

The F1-score of 0.55 that we obtain for a three-way classification
problem is indeed good, since the main literature agrees on con-
sidering a F1-score above 0.5 sufficient for less demanding binary
classification problems [8, 27, 46]. The comparison to the random
baseline (F1-score 0.33), the best rule-based approach (F1-score
0.30), the best learning-based approach (F1-score 0.34), and the best
LLM approach (F1-score 0.39) further confirms the quality of the
0.55 F1-score of E-Test.

RQ2 Findings: E-Test performs significantly better than FAST++
(+61.8% relative improvement) and field-ready testing (+83.3%
relative improvement), which are the approaches functionally
closest to E-Test, in terms of total average F1-score.

3.3 RQ3: Impact of Queries

RQ3 investigates the impact of the combinations of queries in the
prompt of E-Test. Figure 5 shows the F1-scores for all odd combi-
nations of queries (the label of the x-axis), sorted by F1-score. The
label 1-2-3-4-5 indicates the five queries of E-Test, the label Sin-
gle Query indicates the single query “Given MUT, MUT Input and

MUT Tests, you should answer a number indicating its priority for

testing. Answer 1 if MUT Input is already-tested. Answer 2 if MUT
Input is need-test. Answer 3 if MUT Input is error-prone. Do NOT

explain your answer”. We experimented with only combinations of
three queries, since we need (i) at least two queries for a ternary
classification, (ii) an odd number of queries to break ties, and (iii) a
limited number of queries to keep the size of the prompt within a
reasonable limit. We added the single query to study the need of
multiple queries.

The experiment confirms the better performance of five queries
over subsets of three queries. It indicates a nonevent performance
of different combinations of three queries, due to the different
dependencies among queries. It indicates that five queries clearly

outperform a single query, while three queries only do not always
perform better than a single query.

RQ3 Findings: The combinations of queries do significantly
impact the classification, with the whole set of five queries per-
forming significantly better than any subset of queries, while
keeping the prompt within a reasonable size.

3.4 RQ4: Efficiency
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Figure 6: Query time and token consumption for different

configurations (median numbers are at the top of box plots)

The execution time of LLMs to classify the scenarios is the main
factors that limits the practical applicability of E-Test. RQ4 investi-
gates the efficiency of E-Test, by measuring both the response time
and the token consumption of the LLMs, the potential bottlenecks
for the efficiency of E-Test. We measure the response time as the
time that E-Test takes to classify the scenarios with the different
LLMs, and we compare the results with the time that E-Test takes
to select not-yet-tested scenarios by simply executing the scenarios
and determining the increment of branch coverage with respect
to the test suite. In this way, we quantify the gain of LLMs with
respect to the equivalence of the scenarios according to branch
coverage. We collected the inference time for each prompt with the
OpenAI APIs and Ollama APIs for the examined models.

The plots in Figure 6a clearly show that all LLMs (first 5 pairs of
plots) perform dramatically better than the direct computation of
branch coverage (the last plot in the figure). The figure indicates
similar results for all LLMs, with slightly better results of the GPT
family with respect to the Llama family, possibly due to both the
different training of the models that we used for the experiments
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and the runtime setup of the experiments (we ran Llama3 models
on our powerful cluster and GPT with OpenAPIs16). The data in
the figure indicate a high variance of computing branch coverage,
with a wide range of values, from 5.12 to 168.14 seconds. On the
other hand, the response time of all LLMs remains within small
boundaries, within a range between 0.81 and 24.97 seconds, in the
worst case. The data with and without RAG in the figure indicate
the low impact of RAG on the computation time.

Figure 6b compares the token consumption for prompting with
RAG for all five queries as a whole (blue), with RAG separately for
each query at once (purple) and without RAG (green). The plots
indicate no significant differences between GPT and Llama tokeniz-
ers. They also show a large impact of RAG: Prompting queries with
RAG (blue and purple17 plots in the figure) consumes more tokens
than prompting without RAG (green plots). The lower variance of
prompting with RAG separately for each query at once (purple)
than without RAG (green) suggests that the token consumption of
suitably prompting with RAG grows less than prompting without
RAG, and thus improves the efficiency of E-Test.

Querying LLMs about test coverage is less precise than directly
executing the test cases. However, querying LLMs about the possi-
bility that a test case increases the coverage of a large test suite is
far less expensive than executing the test cases in the suite in all
contexts. Our experiments indicate that querying LLMs is an excel-
lent trade-off between the high and impractical costs of executing
very large test suites and the precision of the response.

RQ4 Findings: E-Test classifies scenarios efficiently in terms of
response time with respect to the direct computation of branch
coverage. The limited variance of consumed tokens further con-
firms the efficiency of E-Test.

3.5 RQ5: Test Case Generation

RQ5 investigates the ability of E-Test to generate useful test cases.
We generated test cases for the 673 bugs of Defects4J with accessible
test cases that trigger the failures (trigger tests) and that we use as
ground truth: We fed E-Test with the scenarios that correspond
to the trigger tests, and the test suites of the methods without the
trigger tests. We measured the usefulness of the generated test
cases as the percentage of generated test cases that are syntactically
correct, compile, reveal failures, and obtain the same or higher
branch coverage than the ground truth.We performed syntax check,
compilation check, and failure check, with up to five retries for
fixing syntax errors, compilation errors, and assertion failures for
each sequence, as shown in Algorithm 1.

Figure 7 summarizes the results of the experiment. 667 out of
673 generated tests (99.1%) are syntactically correct (line 6 of Al-
gorithm 1). 23 out of 667 tests required retries to fix some syntax
errors, with a mean of 2 retries. 580 out of 667 syntactically correct
tests (87% with respect to the syntactically correct tests and 86%
with respect to generated tests) successfully compile. 151 out of 580
tests required retries during compilation, with a mean of 1.8 retries.

16The two environments offer the similar GPUs, according to the publicly available
information from OpenAI [6]
17The purple plots in the figure report the tokens consumed for each single query
with RAG, which is limited by the context window of LLMs. The consumption for five
queries is five times the consumption for a single query reported in the plots.

Algorithm 1 Unit Test Case Generation
Require: execution scenario ⟨MUT Input , MUT , MUT Tests ⟩
Ensure: unit test case𝑈𝑇𝐶 or None
1: Execute E-Test scenario classification
2: 𝑈𝑇𝐶 ← Continue prompting with "Use MUT Input to generate only

one test case with an assertion for MUT but do not catch exceptions."
3: 𝑀𝐴𝑋_𝑅𝐸𝑇𝑅𝑌 ← 5
4: 𝑟𝑒𝑡𝑟𝑦𝑠𝑦𝑛𝑡𝑎𝑥 , 𝑟𝑒𝑡𝑟𝑦𝑐𝑜𝑚𝑝𝑖𝑙𝑒 , 𝑟𝑒𝑡𝑟𝑦𝑎𝑠𝑠𝑒𝑟𝑡 ← 0
5: while 𝑟𝑒𝑡𝑟𝑦𝑠𝑦𝑛𝑡𝑎𝑥 , 𝑟𝑒𝑡𝑟𝑦𝑐𝑜𝑚𝑝𝑖𝑙𝑒 , 𝑟𝑒𝑡𝑟𝑦𝑎𝑠𝑠𝑒𝑟𝑡 < 𝑀𝐴𝑋_𝑅𝐸𝑇𝑅𝑌 do

6: Parse𝑈𝑇𝐶 with Python library javalang
7: if Syntax error in𝑈𝑇𝐶 then

8: 𝑟𝑒𝑡𝑟𝑦𝑠𝑦𝑛𝑡𝑎𝑥 ← 𝑟𝑒𝑡𝑟𝑦𝑠𝑦𝑛𝑡𝑎𝑥 + 1
9: 𝑈𝑇𝐶 ← Continue prompting with JavaSyntaxError message
10: else

11: Compile MUT Tests with𝑈𝑇𝐶

12: if Compilation error in𝑈𝑇𝐶 then

13: 𝑟𝑒𝑡𝑟𝑦𝑐𝑜𝑚𝑝𝑖𝑙𝑒 ← 𝑟𝑒𝑡𝑟𝑦𝑐𝑜𝑚𝑝𝑖𝑙𝑒 + 1
14: 𝑈𝑇𝐶 ← Continue prompting with compilation error
15: else

16: Execute𝑈𝑇𝐶

17: if 𝑈𝑇𝐶 does not trigger failures then
18: 𝑟𝑒𝑡𝑟𝑦𝑎𝑠𝑠𝑒𝑟𝑡 ← 𝑟𝑒𝑡𝑟𝑦𝑎𝑠𝑠𝑒𝑟𝑡 + 1
19: 𝑈𝑇𝐶 ← Continue prompting to correct assertions
20: else

21: return𝑈𝑇𝐶

22: return None
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Figure 7: Test generation of E-Test for Defects4J’s 673 bugs

562 out of 580 compiled tests (97% with respect to the compiled
tests and 83.5% with respect to generated tests) trigger the failure
in the ground truth. 85 tests out of 562 required retries to fix asser-
tion issues, with a mean of 1 retry. 560 tests out of 562 tests (99.5%
with respect to the failure-revealing tests and 83% with respect to
generated tests) reveal the failure with a branch coverage equal or
even higher than the ground truth. Overall, E-Test generates test
cases that reveal the failures for 83.2% failures in Defects4J.

The results of our experiments indicate that E-Test generates
test cases that largely augment the coverage of the code and reveal
hidden bugs. The systematic usage of E-Test on the scenarios
observed in production can reduce both the gap between the code
covered with the test suites and the code executed in production,
and the number of bugs that escape the test and occur in production.
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RQ5 Findings: E-Test generates a high number of useful test
cases, that reveal failures by exercising buggy code.

3.6 Threats to Validity

Internal Validity. The main threat to the internal validity of our
results comes from the heterogeneous hardware we use in the
experiments (our cluster for Llama and the OpenAI API for GPT.)
We mitigate the threat by configuring our cluster with the similar
NVIDIA A100 GPUs that OpenAI offers, according to the available
documentation. Discrepancies in the hardware configurations can
change the results in terms of efficiency (RQ4) but do not impact
the validity of E-Test, as an approach that relies on an LLM core.

External Validity. The main threat to the external validity of our
results comes from the dataset. Defects4J is a well know dataset
that is likely part of the general training set of LLMs. We mitigate
the threat by augmenting Defects4J with scenarios we mine from
recent Github projects that are less likely used for training LLMs, for
their only recent availability on the Web. We also make the whole
dataset we use in the experiments publicly available on a replication
package to allow interested readers to replicate the experiments.

4 Related Work

E-Test improves the quality of test suites by sifting candidate test
cases. Here we briefly discuss test suite augmentation for regression
testing and field testing approaches, the closest work that attempts
to improve test suites with new test cases and mine new test cases
from production, respectively, and we briefly overview the LLM-
based approaches to generate test cases that are closest to E-Test.

Test Suite Augmentation. Test suite augmentation approaches
generate test cases to reveal changed behaviors between different
versions of the program [2, 15, 38, 62, 68]. Santelices et al. [54]’s
MaTRIX approach identifies inadequately-tested behaviors with
symbolic execution that analyzes the different chains and condi-
tions up to a given distance around the changes, to contain the
demands of resources of the technique. Bloem et al. [5]’s approach
generates test cases that cover the branches related to functions
that change across versions, by combining symbolic execution and
model checking. Cruciani et al. [14]’s FAST++ statically selects rep-
resentative regression tests from large-size test suites.

E-Test is complementary to test reduction approaches: Test
suite reduction approaches optimize test suites, by filtering out
redundant test cases, E-Test improves the quality of test suites, by
adding test cases that improve the exploration of the runtime space.

Field Testing. Field testing approaches test software systems with
scenarios that emerge in production [4]. Most approaches focus on
executing tests in production without disrupting the system [10, 43,
52]. Murphy et al. [44]’s in-vivo testing forks methods to execute
them with runtime objects that it monitors from production to
avoid interfering with the system behavior. Gazzola et al. [23]’s
field-ready testing generates test cases from scenarios that emerge
in production, by instantiating test templates. E-Test sifts useful
test cases from scenarios with an LLM-core, and relies on field
testing approaches to both mine scenarios from production and
execute the test cases with the configurations from production.

We discuss the experimental comparison of E-Test with both
Cruciani et al.’s FAST++ and Gazzola et al.’s field-ready testing, the
two closest approaches to E-Test, in Section 3.2.

Large Language Models for Software Testing. Large language mod-
els rely on attention mechanism of transformers to answer users’
queries[11, 47, 66]. The strong capability of LLMs in understanding
code-related tasks provides unique opportunities to analyze soft-
ware without executing it [45, 49], especially for testing complex
software systems [18, 19, 39, 57, 58]. Yang et al. [65] conduct an em-
pirical study about the capability of various open-source LLMs on
generating unit test cases and highlight the importance of prompt
design and fine-tuning for the task. Kang et al. [32]’s Libro gener-
ates bug-reproducing test cases via querying an LLM and augments
the test suite with the top test case according to a heuristics-based
ranking. Su et al. [56]’s SysKG-UTF generates testing scenarios
from bug reports via constructing knowledge graph with LLMs.

We use a fine-tuned LLM to classify execution scenarios using a
well-structured prompt template and relevant context with RAG.

5 Conclusion

In this paper, we propose e’er-improving testing, and present E-Test.
E’er-improving testing is a new viewpoint on long lasting testing that
upsets the perspective of testing: We can automatically improve test
suites by siftingmassive amounts of scenarios that become available
from many sources, notably the production environment and the
automatic generation of large sets of test cases. E-Test fine tunes an
LLM core and engineers prompts to gain the information relevant
to separate already-tested, need-test and error-prone scenarios of
Java methods. It uses the information to identify scenarios that can
improve the test suite, namely need-test and error-prone scenarios,
and generates test cases from them. The results of the empirical
evaluation show that E-Test can effectively identify not-yet-tested
scenarios and generate error-revealing test cases. The comparison
with the ground truth and the closest related approaches confirm
the improvement of E-Test over the state of the art. In a nutshell,
our research contributes to advancing automated software testing
methodologies and highlights the potential of LLMs in improv-
ing software reliability with an impact for both researchers and
developers.

We are currently integrating our approach into system test-
ing pipelines to enhance end-to-end testing efficiency and robust-
ness [7]. We are studying both long context LLMs (context window
> 1M tokens) extended with advanced RAG techniques and ex-
tensions of the prompt template with queries that can examine
scenarios beyond inputs, such as telemetry data (logs, metrics, and
traces) to address the core issue of scaling E-Test from unit to
integration and system testing, namely the high-quality context.

Acknowledgments

This work is supported by the Swiss National Science Foundation
under the SNF Grant 200021_215487 A-Test Autonomic Software

Testing (https://data.snf.ch/grants/grant/215487).

References

[1] Nadia Alshahwan, Jubin Chheda, Anastasia Finogenova, Beliz Gokkaya, Mark
Harman, Inna Harper, Alexandru Marginean, Shubho Sengupta, and Eddy Wang.

https://data.snf.ch/grants/grant/215487


ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Ketai Qiu, Luca Di Grazia, Leonardo Mariani, and Mauro Pezzè

2024. Automated Unit Test Improvement using Large Language Models at
Meta. In Companion Proceedings of the 32nd ACM International Conference

on the Foundations of Software Engineering (Porto de Galinhas, Brazil) (FSE
2024). Association for Computing Machinery, New York, NY, USA, 185–196.
https://doi.org/10.1145/3663529.3663839

[2] Abdulrahman Alshammari, Christopher Morris, Michael Hilton, and Jonathan
Bell. 2021. FlakeFlagger: Predicting Flakiness Without Rerunning Tests. In Pro-

ceedings of the 43rd International Conference on Software Engineering (Madrid,
Spain) (ICSE ’21). IEEE Press, 1572–1584. https://doi.org/10.1109/ICSE43902.2021.
00140

[3] Maurício Aniche, Christoph Treude, and Andy Zaidman. 2022. How Developers
Engineer Test Cases: An Observational Study. IEEE Transactions on Software

Engineering 48, 12 (2022), 4925–4946. https://doi.org/10.1109/TSE.2021.3129889
[4] Antonia Bertolino, Pietro Braione, Guglielmo De Angelis, Luca Gazzola, Fit-

sum Kifetew, Leonardo Mariani, Matteo Orrù, Mauro Pezzè, Roberto Pietran-
tuono, Stefano Russo, and Paolo Tonella. 2021. A Survey of Field-based Test-
ing Techniques. ACM Comput. Surv. 54, 5, Article 92 (May 2021), 39 pages.
https://doi.org/10.1145/3447240

[5] Roderick Bloem, Robert Koenighofer, Franz Röck, and Michael Tautschnig. 2014.
Automating Test-Suite Augmentation. In 2014 14th International Conference on

Quality Software. 67–72. https://doi.org/10.1109/QSIC.2014.40
[6] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In
Proceedings of the 34th International Conference on Neural Information Processing

Systems (Vancouver, BC, Canada) (NIPS ’20). Curran Associates Inc., Red Hook,
NY, USA, Article 159, 25 pages.

[7] Matteo Brunetto, Giovanni Denaro, Leonardo Mariani, and Mauro Pezzè. 2021.
On introducing automatic test case generation in practice: A success story and
lessons learned. Journal of Systems and Software 176 (2021), 110933. https:
//doi.org/10.1016/j.jss.2021.110933

[8] Nikolaj Buhl. 2023. F1 Score in Machine Learning. Erişim adresi: https://encord.

com/blog/f1-score-in-machine-learning (2023).
[9] Ricardo Caldas, Juan Antonio Piñera García, Matei Schiopu, Patrizio Pelliccione,

Genaína Rodrigues, and Thorsten Berger. 2024. Runtime Verification and Field-
Based Testing for ROS-Based Robotic Systems. IEEE Trans. Softw. Eng. 50, 10 (Oct.
2024), 2544–2567. https://doi.org/10.1109/TSE.2024.3444697

[10] Mariano Ceccato, Davide Corradini, Luca Gazzola, Fitsum Meshesha Kifetew,
Leonardo Mariani, Matteo Orrù, and Paolo Tonella. 2020. A Framework for In-
Vivo Testing of Mobile Applications. In 2020 IEEE 13th International Conference

on Software Testing, Validation and Verification (ICST). 286–296. https://doi.org/
10.1109/ICST46399.2020.00037

[11] Patrick J. Chapman, Cindy Rubio-González, and Aditya V. Thakur. 2024. Interleav-
ing Static Analysis and LLM Prompting. In Proceedings of the 13th ACM SIGPLAN

International Workshop on the State Of the Art in Program Analysis (Copenhagen,
Denmark) (SOAP 2024). Association for Computing Machinery, New York, NY,
USA, 9–17. https://doi.org/10.1145/3652588.3663317

[12] Runxiang Cheng, Shuai Wang, Reyhaneh Jabbarvand, and Darko Marinov. 2024.
Revisiting Test-Case Prioritization on Long-Running Test Suites. In Proceedings of

the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis

(Vienna, Austria) (ISSTA 2024). Association for Computing Machinery, New York,
NY, USA, 615–627. https://doi.org/10.1145/3650212.3680307

[13] Yiu Wai Chow, Luca Di Grazia, and Michael Pradel. 2024. PyTy: Repairing
Static Type Errors in Python. In Proceedings of the IEEE/ACM 46th International

Conference on Software Engineering (Lisbon, Portugal) (ICSE ’24). Association
for Computing Machinery, New York, NY, USA, Article 87, 13 pages. https:
//doi.org/10.1145/3597503.3639184

[14] Emilio Cruciani, Breno Miranda, Roberto Verdecchia, and Antonia Bertolino.
2019. Scalable Approaches for Test Suite Reduction. In 2019 IEEE/ACM 41st

International Conference on Software Engineering (ICSE). 419–429. https://doi.
org/10.1109/ICSE.2019.00055

[15] Benjamin Danglot, Oscar Vera-Perez, Zhongxing Yu, Andy Zaidman, Martin
Monperrus, and Benoit Baudry. 2019. A snowballing literature study on test
amplification. Journal of Systems and Software 157 (2019), 110398. https://doi.
org/10.1016/j.jss.2019.110398

[16] Giovanni Denaro, Noura El Moussa, Rahim Heydarov, Francesco Lomio, Mauro
Pezzè, and Ketai Qiu. 2024. Predicting Failures of Autoscaling Distributed
Applications. Proc. ACM Softw. Eng. 1, FSE, Article 87 (July 2024), 22 pages.
https://doi.org/10.1145/3660794

[17] Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer. 2021. Em-
pirically evaluating readily available information for regression test optimization
in continuous integration. In Proceedings of the 30th ACM SIGSOFT Interna-

tional Symposium on Software Testing and Analysis (Virtual, Denmark) (ISSTA
2021). Association for Computing Machinery, New York, NY, USA, 491–504.

https://doi.org/10.1145/3460319.3464834
[18] Sarah Fakhoury, Aaditya Naik, Georgios Sakkas, Saikat Chakraborty, and Shu-

vendu K. Lahiri. 2024. LLM-Based Test-Driven Interactive Code Generation:
User Study and Empirical Evaluation. IEEE Trans. Softw. Eng. 50, 9 (Sept. 2024),
2254–2268. https://doi.org/10.1109/TSE.2024.3428972

[19] Zhiyu Fan, Haifeng Ruan, Sergey Mechtaev, and Abhik Roychoudhury. 2024.
Oracle-Guided Program Selection from Large Language Models. In Proceedings of

the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis

(Vienna, Austria) (ISSTA 2024). Association for Computing Machinery, New York,
NY, USA, 628–640. https://doi.org/10.1145/3650212.3680308

[20] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT Symposium

and the 13th European Conference on Foundations of Software Engineering (Szeged,
Hungary) (ESEC/FSE ’11). Association for Computing Machinery, New York, NY,
USA, 416–419. https://doi.org/10.1145/2025113.2025179

[21] Gordon Fraser and Andrea Arcuri. 2012. Whole test suite generation. IEEE

Transactions on Software Engineering 39, 2 (2012), 276–291.
[22] Alessio Gambi, Hemant Gouni, Daniel Berreiter, Vsevolod Tymofyeyev, and

Mattia Fazzini. 2023. Action-Based Test Carving for Android Apps. In 2023 IEEE

International Conference on Software Testing, Verification and ValidationWorkshops

(ICSTW). 107–116. https://doi.org/10.1109/ICSTW58534.2023.00032
[23] Luca Gazzola, Leonardo Mariani, Matteo Orrú, Mauro Pezzè, and Martin Tappler.

2022. Testing Software in Production Environments with Data from the Field. In
2022 IEEE Conference on Software Testing, Verification and Validation (ICST). IEEE
Computer Society, 58–69. https://doi.org/10.1109/ICST53961.2022.00017

[24] Luca Gazzola, Leonardo Mariani, Fabrizio Pastore, and Mauro Pezze. 2017. An
exploratory study of field failures. In 2017 IEEE 28th International Symposium on

Software Reliability Engineering (ISSRE). IEEE, 67–77.
[25] Renan Greca, Breno Miranda, and Antonia Bertolino. 2023. State of practical

applicability of regression testing research: A live systematic literature review.
Comput. Surveys 55, 13s (2023), 1–36.

[26] M. Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. 1993. A methodology for
controlling the size of a test suite. ACM Trans. Softw. Eng. Methodol. 2, 3 (jul
1993), 270–285. https://doi.org/10.1145/152388.152391

[27] Maria Cristina Hinojosa Lee, Johan Braet, and Johan Springael. 2024. Perfor-
mance metrics for multilabel emotion classification: comparing micro, macro,
and weighted f1-scores. Applied Sciences 14, 21 (2024), 9863.

[28] Joseph R. Horgan, Saul London, and Michael R. Lyu. 1994. Achieving software
quality with testing coverage measures. Computer 27, 9 (Sept. 1994), 60–69.
https://doi.org/10.1109/2.312032

[29] Dong Huang, Qingwen Bu, Yichao Fu, Yuhao Qing, Xiaofei Xie, Junjie Chen,
and Heming Cui. 2024. Neuron Sensitivity-Guided Test Case Selection. ACM
Trans. Softw. Eng. Methodol. 33, 7, Article 188 (Sept. 2024), 32 pages. https:
//doi.org/10.1145/3672454

[30] Anisha Islam, Nipuni Tharushika Hewage, Abdul Ali Bangash, and AbramHindle.
2023. Evolution of the Practice of Software Testing in Java Projects. In 2023

IEEE/ACM 20th International Conference on Mining Software Repositories (MSR).
367–371. https://doi.org/10.1109/MSR59073.2023.00057

[31] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: a database of
existing faults to enable controlled testing studies for Java programs. In Proceed-

ings of the 2014 International Symposium on Software Testing and Analysis (San
Jose, CA, USA) (ISSTA 2014). Association for Computing Machinery, New York,
NY, USA, 437–440. https://doi.org/10.1145/2610384.2628055

[32] Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023. Large LanguageModels are Few-
Shot Testers: Exploring LLM-Based General Bug Reproduction. In Proceedings of

the 45th International Conference on Software Engineering (Melbourne, Victoria,
Australia) (ICSE ’23). IEEE Press, 2312–2323. https://doi.org/10.1109/ICSE48619.
2023.00194

[33] Pavneet Singh Kochhar, Ferdian Thung, and David Lo. 2015. Code coverage
and test suite effectiveness: Empirical study with real bugs in large systems.
In 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and

Reengineering (SANER). 560–564. https://doi.org/10.1109/SANER.2015.7081877
[34] Zhanyao Lei, Yixiong Chen, Mingyuan Xia, and Zhengwei Qi. 2024. Foliage:

Nourishing Evolving Software by Characterizing and Clustering Field Bugs.
In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software

Testing and Analysis (Vienna, Austria) (ISSTA 2024). Association for Computing
Machinery, New York, NY, USA, 1325–1337. https://doi.org/10.1145/3650212.
3680363

[35] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,
Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In Proceedings of the 34th International Conference
on Neural Information Processing Systems (Vancouver, BC, Canada) (NIPS ’20).
Curran Associates Inc., Red Hook, NY, USA, Article 793, 16 pages.

[36] Bolun Li, Pengfei Su, Milind Chabbi, Shuyin Jiao, and Xu Liu. 2023. DJXPerf:
Identifying Memory Inefficiencies via Object-Centric Profiling for Java. In Pro-

ceedings of the 21st ACM/IEEE International Symposium on Code Generation and

Optimization (Montréal, QC, Canada) (CGO ’23). Association for Computing

https://doi.org/10.1145/3663529.3663839
https://doi.org/10.1109/ICSE43902.2021.00140
https://doi.org/10.1109/ICSE43902.2021.00140
https://doi.org/10.1109/TSE.2021.3129889
https://doi.org/10.1145/3447240
https://doi.org/10.1109/QSIC.2014.40
https://doi.org/10.1016/j.jss.2021.110933
https://doi.org/10.1016/j.jss.2021.110933
https://doi.org/10.1109/TSE.2024.3444697
https://doi.org/10.1109/ICST46399.2020.00037
https://doi.org/10.1109/ICST46399.2020.00037
https://doi.org/10.1145/3652588.3663317
https://doi.org/10.1145/3650212.3680307
https://doi.org/10.1145/3597503.3639184
https://doi.org/10.1145/3597503.3639184
https://doi.org/10.1109/ICSE.2019.00055
https://doi.org/10.1109/ICSE.2019.00055
https://doi.org/10.1016/j.jss.2019.110398
https://doi.org/10.1016/j.jss.2019.110398
https://doi.org/10.1145/3660794
https://doi.org/10.1145/3460319.3464834
https://doi.org/10.1109/TSE.2024.3428972
https://doi.org/10.1145/3650212.3680308
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1109/ICSTW58534.2023.00032
https://doi.org/10.1109/ICST53961.2022.00017
https://doi.org/10.1145/152388.152391
https://doi.org/10.1109/2.312032
https://doi.org/10.1145/3672454
https://doi.org/10.1145/3672454
https://doi.org/10.1109/MSR59073.2023.00057
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1109/ICSE48619.2023.00194
https://doi.org/10.1109/ICSE48619.2023.00194
https://doi.org/10.1109/SANER.2015.7081877
https://doi.org/10.1145/3650212.3680363
https://doi.org/10.1145/3650212.3680363


E-Test: E’er-Improving Test Suites ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Machinery, New York, NY, USA, 81–94. https://doi.org/10.1145/3579990.3580010
[37] Yu Liu, Jiyang Zhang, Pengyu Nie, Milos Gligoric, and Owolabi Legunsen. 2023.

More Precise Regression Test Selection via Reasoning about Semantics-Modifying
Changes. In Proceedings of the 32nd ACM SIGSOFT International Symposium on

Software Testing and Analysis (Seattle, WA, USA) (ISSTA 2023). Association for
Computing Machinery, New York, NY, USA, 664–676. https://doi.org/10.1145/
3597926.3598086

[38] Yujie Liu, Mingxuan Zhu, Jinhao Dong, Junzhe Yu, and Dan Hao. 2024. Compiler
Bug Isolation via Enhanced Test Program Mutation. In Proceedings of the 39th

IEEE/ACM International Conference on Automated Software Engineering (Sacra-
mento, CA, USA) (ASE ’24). Association for Computing Machinery, New York,
NY, USA, 819–830. https://doi.org/10.1145/3691620.3695074

[39] You Lu, Yifan Tian, Yuyang Bi, Bihuan Chen, and Xin Peng. 2024. DiaVio: LLM-
Empowered Diagnosis of Safety Violations in ADS Simulation Testing. In Proceed-
ings of the 33rd ACM SIGSOFT International Symposium on Software Testing and

Analysis (Vienna, Austria) (ISSTA 2024). Association for Computing Machinery,
New York, NY, USA, 376–388. https://doi.org/10.1145/3650212.3652135

[40] Wei Ma, Mike Papadakis, Anestis Tsakmalis, Maxime Cordy, and Yves Le Traon.
2021. Test Selection for Deep Learning Systems. ACM Trans. Softw. Eng. Methodol.

30, 2, Article 13 (jan 2021), 22 pages. https://doi.org/10.1145/3417330
[41] Ian R. McKenzie, Alexander Lyzhov, Michael Martin Pieler, Alicia Parrish,

Aaron Mueller, Ameya Prabhu, Euan McLean, Xudong Shen, Joe Cavanagh,
Andrew George Gritsevskiy, Derik Kauffman, Aaron T. Kirtland, Zhengping
Zhou, Yuhui Zhang, Sicong Huang, Daniel Wurgaft, Max Weiss, Alexis Ross,
Gabriel Recchia, Alisa Liu, Jiacheng Liu, Tom Tseng, Tomasz Korbak, Najoung
Kim, Samuel R. Bowman, and Ethan Perez. 2023. Inverse Scaling: When Big-
ger Isn’t Better. Transactions on Machine Learning Research (2023). https:
//openreview.net/forum?id=DwgRm72GQF Featured Certification.

[42] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siem-
borski, and John Micco. 2017. Taming Google-scale continuous testing. In 2017

IEEE/ACM 39th International Conference on Software Engineering: Software En-

gineering in Practice Track (ICSE-SEIP). 233–242. https://doi.org/10.1109/ICSE-
SEIP.2017.16

[43] Jesús Morán, Antonia Bertolino, Claudio de la Riva, and Javier Tuya. 2017.
Towards Ex Vivo Testing of MapReduce Applications. In 2017 IEEE Interna-

tional Conference on Software Quality, Reliability and Security (QRS). 73–80.
https://doi.org/10.1109/QRS.2017.17

[44] Christian Murphy, Gail Kaiser, Ian Vo, and Matt Chu. 2009. Quality Assurance of
Software Applications Using the In Vivo Testing Approach. In 2009 International

Conference on Software Testing Verification and Validation. 111–120. https://doi.
org/10.1109/ICST.2009.18

[45] Yu Nong, Haoran Yang, Long Cheng, Honxin Hu, and Haipeng Cai. 2025. AP-
PATCH: Automated Adaptive Prompting Large Language Models for Real-World
Software Vulnerability Patching. In 34th USENIX Security Symposium (USENIX

Security 25). 1–20.
[46] Juri Opitz and Sebastian Burst. 2019. Macro f1 and macro f1. arXiv preprint

arXiv:1911.03347 (2019).
[47] ShuyinOuyang, JieM. Zhang,MarkHarman, andMengWang. 2025. An Empirical

Study of the Non-Determinism of ChatGPT in Code Generation. ACM Trans.

Softw. Eng. Methodol. 34, 2, Article 42 (Jan. 2025), 28 pages. https://doi.org/10.
1145/3697010

[48] Rongqi Pan, Mojtaba Bagherzadeh, Taher A. Ghaleb, and Lionel Briand. 2022. Test
case selection and prioritization using machine learning: a systematic literature
review. Empirical Softw. Engg. 27, 2 (mar 2022), 43 pages. https://doi.org/10.
1007/s10664-021-10066-6

[49] Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng Yin. 2023.
Can large language models reason about program invariants?. In Proceedings of

the 40th International Conference on Machine Learning (Honolulu, Hawaii, USA)
(ICML’23). JMLR.org, Article 1144, 25 pages.

[50] Mauro Pezzè and Michal Young. 2008. Software testing and analysis: process,

principles, and techniques. John Wiley & Sons.
[51] Leandro Sales Pinto, Saurabh Sinha, and Alessandro Orso. 2012. Understanding

myths and realities of test-suite evolution. In Proceedings of the ACM SIGSOFT

20th International Symposium on the Foundations of Software Engineering (Cary,
North Carolina) (FSE ’12). Association for Computing Machinery, New York, NY,
USA, Article 33, 11 pages. https://doi.org/10.1145/2393596.2393634

[52] Adam Porter, Cemal Yilmaz, Atif M. Memon, Douglas C. Schmidt, and Bala
Natarajan. 2007. Skoll: A Process and Infrastructure for Distributed Continuous
Quality Assurance. IEEE Transactions on Software Engineering 33, 8 (2007), 510–
525. https://doi.org/10.1109/TSE.2007.70719

[53] Debra J. Richardson and Lori A. Clarke. 1981. A partition analysis method to
increase program reliability. In Proceedings of the 5th International Conference on

Software Engineering (San Diego, California, USA) (ICSE ’81). IEEE Press, 244–253.
[54] Raul Santelices, Pavan Kumar Chittimalli, Taweesup Apiwattanapong, Alessan-

dro Orso, and Mary Jean Harrold. 2008. Test-Suite Augmentation for Evolving
Software. In 2008 23rd IEEE/ACM International Conference on Automated Software

Engineering. IEEE Computer Society, USA, 218–227. https://doi.org/10.1109/ASE.
2008.32

[55] Nicholas Smith, Danny van Bruggen, and Federico Tomassetti. 2023. JavaParser:
Visited. https://leanpub.com/javaparservisited Last accessed 22 October 2024.

[56] Yanqi Su, Dianshu Liao, Zhenchang Xing, Qing Huang, Mulong Xie, Qinghua
Lu, and Xiwei Xu. 2024. Enhancing Exploratory Testing by Large Language
Model and Knowledge Graph. In Proceedings of the IEEE/ACM 46th International

Conference on Software Engineering (Lisbon, Portugal) (ICSE ’24). Association
for Computing Machinery, New York, NY, USA, Article 98, 12 pages. https:
//doi.org/10.1145/3597503.3639157

[57] Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing
Wang. 2024. Software Testing With Large Language Models: Survey, Landscape,
and Vision. IEEE Trans. Softw. Eng. 50, 4 (April 2024), 911–936. https://doi.org/
10.1109/TSE.2024.3368208

[58] WenhanWang, Chenyuan Yang, Zhijie Wang, Yuheng Huang, Zhaoyang Chu, Da
Song, Lingming Zhang, An Ran Chen, and Lei Ma. 2025. TESTEVAL: Benchmark-
ing Large Language Models for Test Case Generation. arXiv:2406.04531 [cs.SE]
https://arxiv.org/abs/2406.04531

[59] YaqingWang, Quanming Yao, James T. Kwok, and LionelM. Ni. 2020. Generalizing
from a Few Examples: A Survey on Few-shot Learning. ACM Comput. Surv. 53, 3,
Article 63 (June 2020), 34 pages. https://doi.org/10.1145/3386252

[60] Martin Weyssow, Xin Zhou, Kisub Kim, David Lo, and Houari Sahraoui. 2025.
Exploring Parameter-Efficient Fine-Tuning Techniques for Code Generation
with Large Language Models. ACM Trans. Softw. Eng. Methodol. (Jan. 2025).
https://doi.org/10.1145/3714461 Just Accepted.

[61] Dietmar Winkler, Pirmin Urbanke, and Rudolf Ramler. 2022. What do we know
about readability of test code?-a systematic mapping study. In 2022 IEEE Inter-

national Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 1167–1174.

[62] Zhihong Xu, Yunho Kim, Moonzoo Kim, Gregg Rothermel, and Myra B. Co-
hen. 2010. Directed test suite augmentation: techniques and tradeoffs. In Pro-

ceedings of the Eighteenth ACM SIGSOFT International Symposium on Foun-

dations of Software Engineering (Santa Fe, New Mexico, USA) (FSE ’10). As-
sociation for Computing Machinery, New York, NY, USA, 257–266. https:
//doi.org/10.1145/1882291.1882330

[63] Pengyu Xue, Linhao Wu, Zhen Yang, Chengyi Wang, Xiang Li, Yuxiang Zhang,
Jia Li, Ruikai Jin, Yifei Pei, Zhaoyan Shen, et al. 2025. ClassEval-T: Evaluating
Large Language Models in Class-Level Code Translation. Proceedings of the ACM
on Software Engineering 2, ISSTA (2025), 1421–1444.

[64] Weixiang Yan, Yuchen Tian, Yunzhe Li, Qian Chen, and Wen Wang. 2023. Code-
TransOcean: A Comprehensive Multilingual Benchmark for Code Translation.
In Findings of the Association for Computational Linguistics: EMNLP 2023, Houda
Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for Computational
Linguistics, Singapore, 5067–5089. https://doi.org/10.18653/v1/2023.findings-
emnlp.337

[65] Lin Yang, Chen Yang, Shutao Gao, Weijing Wang, Bo Wang, Qihao Zhu, Xiao
Chu, Jianyi Zhou, Guangtai Liang, Qianxiang Wang, and Junjie Chen. 2024. On
the Evaluation of Large Language Models in Unit Test Generation. In Proceedings

of the 39th IEEE/ACM International Conference on Automated Software Engineering

(Sacramento, CA, USA) (ASE ’24). Association for Computing Machinery, New
York, NY, USA, 1607–1619. https://doi.org/10.1145/3691620.3695529

[66] Xueqi Yang, Mariusz Jakubowski, Li Kang, Haojie Yu, and Tim Menzies. 2024.
SparseCoder: Advancing source code analysis with sparse attention and learned
token pruning. Empirical Softw. Engg. 30, 1 (Dec. 2024), 30 pages. https://doi.
org/10.1007/s10664-024-10558-1

[67] Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection
and prioritization: a survey. Software testing, verification and reliability 22, 2
(2012), 67–120.

[68] Lingming Zhang, Darko Marinov, Lu Zhang, and Sarfraz Khurshid. 2011. An
Empirical Study of JUnit Test-Suite Reduction. In Proceedings of the 2011 IEEE

22nd International Symposium on Software Reliability Engineering (ISSRE ’11).
IEEE Computer Society, USA, 170–179. https://doi.org/10.1109/ISSRE.2011.26

[69] Zhi Quan Zhou, Shaowen Xiang, and Tsong Yueh Chen. 2016. Metamorphic
Testing for Software Quality Assessment: A Study of Search Engines. IEEE

Transactions on Software Engineering 42, 3 (2016), 264–284. https://doi.org/10.
1109/TSE.2015.2478001

https://doi.org/10.1145/3579990.3580010
https://doi.org/10.1145/3597926.3598086
https://doi.org/10.1145/3597926.3598086
https://doi.org/10.1145/3691620.3695074
https://doi.org/10.1145/3650212.3652135
https://doi.org/10.1145/3417330
https://openreview.net/forum?id=DwgRm72GQF
https://openreview.net/forum?id=DwgRm72GQF
https://doi.org/10.1109/ICSE-SEIP.2017.16
https://doi.org/10.1109/ICSE-SEIP.2017.16
https://doi.org/10.1109/QRS.2017.17
https://doi.org/10.1109/ICST.2009.18
https://doi.org/10.1109/ICST.2009.18
https://doi.org/10.1145/3697010
https://doi.org/10.1145/3697010
https://doi.org/10.1007/s10664-021-10066-6
https://doi.org/10.1007/s10664-021-10066-6
https://doi.org/10.1145/2393596.2393634
https://doi.org/10.1109/TSE.2007.70719
https://doi.org/10.1109/ASE.2008.32
https://doi.org/10.1109/ASE.2008.32
https://leanpub.com/javaparservisited
https://doi.org/10.1145/3597503.3639157
https://doi.org/10.1145/3597503.3639157
https://doi.org/10.1109/TSE.2024.3368208
https://doi.org/10.1109/TSE.2024.3368208
https://arxiv.org/abs/2406.04531
https://arxiv.org/abs/2406.04531
https://doi.org/10.1145/3386252
https://doi.org/10.1145/3714461
https://doi.org/10.1145/1882291.1882330
https://doi.org/10.1145/1882291.1882330
https://doi.org/10.18653/v1/2023.findings-emnlp.337
https://doi.org/10.18653/v1/2023.findings-emnlp.337
https://doi.org/10.1145/3691620.3695529
https://doi.org/10.1007/s10664-024-10558-1
https://doi.org/10.1007/s10664-024-10558-1
https://doi.org/10.1109/ISSRE.2011.26
https://doi.org/10.1109/TSE.2015.2478001
https://doi.org/10.1109/TSE.2015.2478001

	Abstract
	1 Introduction
	2 E-Test
	2.1 PreProcessor
	2.2 Analyzer
	2.3 PostProcessor

	3 Experimental Validation
	3.1 RQ1: Impact of LLMs
	3.2 RQ2: Comparative Evaluation
	3.3 RQ3: Impact of Queries
	3.4 RQ4: Efficiency
	3.5 RQ5: Test Case Generation
	3.6 Threats to Validity

	4 Related Work
	5 Conclusion
	Acknowledgments
	References

