
Supporting Software Evolution
via Search and Prediction

Von der Fakultät für Informatik, Elektrotechnik und Informationstechnik der
Universität Stuttgart zur Erlangung der Würde eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Abhandlung

Vorgelegt von
Luca Di Grazia
aus Jesi, Italien

Hauptberichter: Prof. Dr. Michael Pradel
1. Mitberichter: Prof. Dr. Georgios Gousios
2. Mitberichter: Prof. Dr. Kathryn T. Stolee

Tag der mündlichen Prüfung: 1 Februar, 2024

Institut für Software Engineering der Universität Stuttgart

2024

Supporting Software Evolution via Search and Prediction
Such- und Vorhersageverfahren zur Unterstützung von Software-Evolution

Doctoral dissertation
Submitted by Luca Di Grazia
Advised by Prof. Dr. Michael Pradel

Oral defense on February 1, 2024
Examination committee:
Prof. Dr. Michael Pradel
Prof. Dr. Georgios Gousios
Prof. Dr. Kathryn T. Stolee

Institut für Software Engineering
Fakultät für Informatik, Elektrotechnik und Informationstechnik
Universität Stuttgart

©2024

Abstract

Software evolution involves the growth and adaptation of software throughout
its lifecycle, including bug fixes, security patches, new programming language
features, and user-driven improvements. The effective understanding and man-
agement of software evolution is essential to ensure the sustained functionality
and reliability of digital systems.
In the realm of software evolution, we have identified three key challenges.

The first challenge involves the necessity for improved information retrieval meth-
ods in software evolution. Efficiently identifying and localizing code changes as
software evolves is a fundamental problem, for example in identifying the root
cause of a bug, necessitating systematic methodologies for effective information
retrieval. The second challenge underlines the importance of understanding
developers’ code change patterns to optimize development workflows. Analyz-
ing commit patterns, repository characteristics, and collaborative development
helps to build better methodologies and approaches for practitioners. The third
challenge is that developers spend large amounts of time manually fixing bugs,
and this task can be automated. This challenge is particularly crucial in large-
scale projects, helping to improve development processes, enhance software
maintenance, and ensure the delivery of high-quality software by automatically
fixing bugs.

iii

This dissertation argues that these challenges of software evolution can be
effectively addressed through a combination of program analysis, information
retrieval, and deep learning approaches. We make four contributions to support
our argument. We address the first challenge with a survey on code search
and proposing a search engine for code changes. For the second challenge,
we conduct a comprehensive empirical study using static program analysis on
the evolution of type annotations in Python to comprehend these code change
patterns. For the final challenge, we introduce PyTy, an automated program
repair tool for Python type errors using transfer learning.
The contributions of this dissertation impact both developers and researchers

in the field. First, our survey not only enhances understanding but also guides
researchers towards emerging trends and unresolved issues in information
retrieval for code. DiffSearch provides developers with a powerful approach
for efficiently searching code changes, demonstrating superiority over existing
methods. Our empirical study on type annotations contributes valuable insights
for the Python community, shedding light on adoption trends and correlations
with type errors. Finally, PyTy surpasses state-of-the-art techniques, offering
developers an effective and precise approach to automatically fix Python type
errors. As a result, these research projects address evolving challenges and assist
professionals in the important field of software evolution.

iv

Zusammenfassung

Die Softwareentwicklung umfasst das Wachstum und die Anpassung von Soft-
ware während ihres gesamten Lebenszyklus, einschließlich Fehlerkorrekturen,
Sicherheitspatches, neuer Programmiersprachenfunktionen und benutzergesteu-
erter Verbesserungen. Ein effektives Verständnis und Management der Software-
entwicklung ist unerlässlich, um die dauerhafte Funktionalität und Zuverlässig-
keit digitaler Systeme zu gewährleisten.
Auf dem Gebiet der Softwareentwicklung haben wir drei zentrale Herausfor-

derungen identifiziert. Die erste betrifft verbesserte Methoden zur Informations-
gewinnung in der Softwareentwicklung. Die effiziente Identifizierung und Loka-
lisierung von Code-Änderungen während der Softwareentwicklung ist ein grund-
legendes Problem, z. B. bei der Identifizierung der Ursache eines Fehlers, und
erfordert systematische Methoden für eine effektive Informationsbeschaffung.
Die zweite Herausforderung ist das Verstehen von Code-Änderungsmustern von
Entwicklern, um Entwicklungsabläufe zu optimieren. Die Analyse von Commit-
Mustern, Repository-Merkmalen und kollaborative Entwicklung helfen dabei,
bessere Methoden und Ansätze für Anwender zu entwickeln. Die dritte Her-
ausforderung besteht darin, dass Entwickler viel Zeit für die manuelle Fehler-
behebung aufbringen. Diese Aufgabe kann automatisiert werden. Dies ist vor
allem bei großen Projekten von entscheidender Bedeutung, da sie dazu beiträgt,
die Entwicklungsprozesse zu verbessern, die Softwarewartung zu optimieren
und die Bereitstellung qualitativ hochwertiger Software durch die automatische

v

Behebung von Fehlern zu gewährleisten.
In dieser Dissertation wird argumentiert, dass diese Herausforderungen in der

Softwareentwicklung durch eine Kombination aus Programmanalyse, Informati-
on Retrieval und Deep Learning-Ansätzen effektiv angegangen werden können.
Wir leisten vier Beiträge, um unser Argument zu untermauern. Wir befassen uns
mit dem ersten Thema, indem wir einen Überblick über die Codesuche geben
und eine Suchmaschine für Code-Änderungsmuster vorschlagen. Für das zweite
Problem führen wir eine umfassende empirische Studie mit statischer Programm-
analyse über die Entwicklung von Typannotationen in Python durch, um diese
Codeänderungsmuster zu verstehen. Für die letzte Herausforderung stellen wir
PyTy vor, ein automatisches Programmreparaturwerkzeug für Python-Typfehler
unter Verwendung von Transfer Learning.
Die Beiträge dieser Dissertation wirken sich sowohl auf Entwickler als auch

auf Forscher in diesem Bereich aus. Erstens verbessert unsere Studie nicht nur
das Verständnis, sondern gibt den Forschern auch Hinweise auf neue Trends
und ungelöste Probleme beim Information Retrieval für Code. DiffSearch bie-
tet Entwicklern einen leistungsstarken Ansatz für die effiziente Suche nach
Codeänderungen und ist damit den bestehenden Methoden überlegen. Unsere
empirische Studie zu Typ-Annotationen liefert wertvolle Erkenntnisse für die
Python-Community, indem sie Trends bei der Einführung und Korrelationen mit
Typ-Fehlern aufzeigt. Schließlich übertrifft PyTy den Stand der Technik und
bietet Entwicklern einen effektiven und präzisen Ansatz, um Python-Typfehler
automatisch zu beheben. All diese Forschungsprojekte gehen auf die neuesten
Herausforderungen ein und unterstützen Fachleute auf dem wichtigen Gebiet
der Softwareentwicklung.

vi

Acknowledgements

I want to say a big thank you to my supervisor, Prof. Dr. Michael Pradel. He has
been a great help and guide to me. He taught me that when things seem tough,
or when the idea of giving up crosses your mind, you must always remember to
use the incredible inner strength everyone possess. He stimulated me to search
for that crazy determination that makes you feel invincible, which gives you the
certainty that everything is going to be fine. After all, maybe you will not always
win, but surely you will never lose! I am also grateful to the members of my
Ph.D. committee Prof. Dr. Georgios Gousios and Prof. Dr. Kathryn T. Stolee for
their advice and support, their amazing work inspired me and make me grow as
a researcher. A shoutout to everyone in the SOLA team and the visitors during
these years, they were not only colleagues, but also friends. Many of you have
been with me since the beginning, and your help has been essential. I also want
to thank Katharina Plett who helped me to translate the abstract of this thesis
into German and Dr. Daniel Lehmann who gave feedback on this dissertation.
My wife Aubrey King deserves a special mention. Thank you for being my rock
and the best part of my life. And to my family in Italy, without you all, I would
not be where I am today. I cannot forget my friends, my second family, who
have been there for me during the tough times. You are the best! Lastly, thanks
to Prof. Dr. rer. nat. Frank Leymann, the ESE group, the PSG team at Uber, the
University of Stuttgart, the state of Baden-Württemberg, the German Research
Foundation (DFG), and the European Research Council (ERC). Grazie mille!

vii

viii

Contents

1 Introduction 1
1.1 Software Evolution . 1
1.2 Challenges . 2

1.2.1 Better Information Retrieval for Software Evolution 2
1.2.2 Understanding the Evolution Patterns of Developer Code

Changes . 3
1.2.3 Automatically Performing Code Changes to Fix Bugs 3

1.3 Thesis Statement . 4
1.4 Contributions . 5

1.4.1 Code Search Survey . 6
1.4.2 Searching for Code Changes . 7
1.4.3 Study of Python Type Annotation Evolution 8
1.4.4 Automatic Program Repair for Python Type Errors 9

1.5 Publications and Resources . 10

2 Code Search: A Survey of Techniques for Finding Code 13
2.1 Introduction . 14
2.2 Queries for Searching Code . 19

2.2.1 Free-Form Queries . 20
2.2.2 Queries Based on Existing Programming Languages 22

ix

2.2.3 Custom Querying Languages . 24
2.2.4 Input-Output Examples as Queries 26
2.2.5 Hybrids of Informal and Formal Queries 27

2.3 Preprocessing and Expansion of Queries 27
2.3.1 User Interface of Query Preprocessing and Expansion Ap-

proaches . 28
2.3.2 Information Used to Modify Queries 29
2.3.3 Techniques Used to Modify Queries 31

2.4 Indexing or Training, Followed by Retrieval of Code 32
2.4.1 Artifacts That Get Indexed . 34
2.4.2 Representing the Information for Indexing and Retrieval . . 36
2.4.3 Techniques to Compare Queries and Code 38
2.4.4 Granularity of Retrieved Source Code 43

2.5 Ranking and Pruning of Search Results 45
2.5.1 Ranking of Search Results . 45
2.5.2 Pruning of Search Results . 46

2.6 Empirical Studies of Code Search . 47
2.6.1 Setups of Empirical Studies . 48
2.6.2 Results of Studies and their Implications 48

2.7 Open Challenges and Research Directions 50
2.7.1 Support for Additional Usage Scenarios 50
2.7.2 Cross-Fertilization with Code Completion and Clone Detection 51
2.7.3 Learning-Based Code Search . 51
2.7.4 Deployment and Adoption in Practice 52
2.7.5 Common Datasets and Benchmarks 53

2.8 Concluding Remarks . 54

3 DiffSearch: A Scalable and Precise Search Engine for Code Changes 55
3.1 Introduction . 56
3.2 Example and Overview . 59

3.2.1 Motivating Example . 59
3.2.2 Problem Statement . 60
3.2.3 Main Idea of the Approach . 61

x Contents

3.3 Approach . 62
3.3.1 Query Language . 62
3.3.2 Tree-based Representation of Code Changes and Queries . . 64
3.3.3 Extracting Features . 66
3.3.4 Indexing and Retrieving Code Changes 68
3.3.5 Matching of Candidate Search Results 69

3.4 Implementation . 73
3.5 Evaluation . 74

3.5.1 RQ1: Recall . 75
3.5.2 RQ2: Efficiency and Scalability 76
3.5.3 RQ3: User Study . 78
3.5.4 RQ4: Searching for Bug Fixes 83
3.5.5 RQ5: Impact of Parameters . 84
3.5.6 RQ6: Queries vs. Search Results 85

3.6 Limitations and Future Work . 87
3.7 Concluding Remarks . 87

4 The evolution of type annotations in Python: an empirical study 89
4.1 Introduction . 90
4.2 Methodology . 94

4.2.1 Extracting and Studying Type Annotations 94
4.2.2 Extracting and Studying Type Annotation Changes 95
4.2.3 Gathering and Studying of Type Errors 98
4.2.4 Selection of Projects to Study 99

4.3 Results . 100
4.3.1 RQ1: Ecosystem-level Evolution of Type Annotations 100
4.3.2 RQ2: Project-level Evolution of Type Annotations 104
4.3.3 RQ3: Evolution of Individual Type Annotations 106
4.3.4 RQ4: Type Errors vs. Type Annotations 111

4.4 Discussion . 115
4.5 Concluding Remarks . 117

Contents xi

5 PyTy: Repairing Static Type Errors in Python 119
5.1 Introduction . 120

5.1.1 Context . 120
5.1.2 Significance . 121
5.1.3 Approach . 122
5.1.4 Results . 123
5.1.5 Contributions . 123

5.2 Background on Python Type Checkers 124
5.3 Preliminary Study . 125

5.3.1 Data Collection . 125
5.3.2 Results . 126
5.3.3 Implications . 131

5.4 Approach . 131
5.4.1 Automated Data Gathering . 132
5.4.2 Neural Type Error Fixing . 135

5.5 Implementation . 138
5.6 Evaluation . 138

5.6.1 RQ1: Effectiveness of Automatic Data Gathering 138
5.6.2 RQ2: Effectiveness of PyTy . 141
5.6.3 RQ3: Ablation Study of PyTy . 144
5.6.4 RQ4: Comparison with Prior Work 146

5.7 Discussion and Threats to Validity . 148
5.7.1 Python Repositories . 148
5.7.2 Limitations of static type checking 148
5.7.3 Type annotations . 149
5.7.4 Type Errors . 149

5.8 Concluding Remarks . 150

6 Related work 151
6.1 Analyses of Code Changes . 151
6.2 Software Evolution Studies . 152
6.3 Tracking Code Elements Across Version Histories 153
6.4 Mining and Learning from Code Changes 153
6.5 Clone Detection . 154

xii Contents

6.6 Type Annotations and Type Errors . 155
6.7 Type Prediction for Dynamically Typed Languages 156
6.8 Automated Program Repair . 157

7 Conclusions and Future Work 159
7.1 Reflections and Lessons . 160
7.2 Research Vision and Future Work . 161

Bibliography 163

A Curriculum Vitae 195

B Erklärung 197

Contents xiii

List of Figures

1.1 Overview of the topics covered in this dissertation. 5

2.1 Papers on code search discussed in this chapter. 16
2.2 Overview of the topics covered in this chapter. 16
2.3 Taxonomy of code search queries and number of approaches

accepting each kind of query. 20
2.4 Overview of techniques for indexing and retrieval. 34

3.1 Overview of the approach. 61
3.2 Simplified grammar of queries. Non-terminals are in italics. . . . 63
3.3 Parse tree representations of Code change 2 (a) and the query

from Section 3.2 (b). Only some of all considered features are
highlighted for illustration. 65

3.4 Response time across differently sized datasets (average and 95%
confidence interval). Top: Full DiffSearch. Bottom: DiffSearch
without indexing. 77

4.1 Example of an evolving, partially type-annotated Python function. 91
4.2 Evolution of type annotations across all projects. 101
4.3 Evolution of program elements with and without type annota-

tions. 102

xv

4.4 Per-project evolution of three representative projects. 103
4.5 Percentage of annotation-related, edited lines among all edited

lines. 107
4.6 Example of removing a type annotation. 108
4.7 Number of times that the same type annotation is updated by

developers. Not shown are the 90.1% of all type annotations
with zero updates. 110

4.8 Example of a type annotation updated multiple times. 111
4.9 Most common kinds of type annotation changes. 112
4.10 Example of adding a wrong type annotation and then updating

it with Optional type. 113
4.11 Relation between type errors and type annotations in a project

(correlation: 0.704). 114

5.1 Examples of type errors fixed by PyTy. 121
5.2 Type errors (left) and related fix patterns (right), based on 125

type error fixes collected in the preliminary study. 126
5.3 Examples of fixing type errors based on error messages. 128
5.4 Fix locations and usefulness of error messages. 130
5.5 Overview of the approach. 132
5.6 Multi-hunk commit that fixes multiple type errors. 134
5.7 Example of a correct (but not minimal) entry in PyTyDefects. . . 139
5.8 Exact match of fix for type error “Unbound name: Name constrained

is used but not defined in the current scope”. 140
5.9 Correct fix different from the developer-provided fix for type

error “Incompatible variable type: string is declared to have
type str but is used as type bytes”. 140

5.10 Fix predicted by the neural model, but not suggested to the user,
as the type error “Unbound name: Name F5_DEVICE_TYPE is
used but not defined in the current scope” would still exist for
DEVICE_TYPE. 140

xvi List of Figures

5.11 PyTy-suggested fix that removes the error “Incompatible variable
type: Bot is declared to have type BotUser but is used as type
User”, while changing the behavior in an unintended way. 141

List of Figures xvii

List of Tables

1.1 Mapping between chapters and their respective resources. 11

2.1 Overview of approaches for preprocessing and expansion of queries. 28
2.2 Overview of approaches based on information retrieval technique
respect to kind of indexed information (1-3 rows) and kind of
feature extracted (4-6) rows. 33

2.3 Granularity of source code extracted by code search approaches. 44
2.4 Overview of empirical studies on code search. 47

3.1 Examples of Java changes and matching queries. 64
3.2 Recall of DiffSearch across 80 queries per language. 76
3.3 Query descriptions for user study and summary of search results. 80
3.4 Effectiveness of DiffSearch in finding instances of bug fix pat-

terns [115]. 84
3.5 Impact of length l of feature vectors and number k of candidates

(default configuration is (bold). 86

5.1 Results of PyTy for each class of type error. 142
5.2 Ablation study and comparison with LLMs. 144

xix

Ch
ap
te
r 1

Introduction

1.1 Software Evolution

Software is always growing and evolving [168]. From the first lines of code
to the eventual retirement of a program, software changes to fix bugs, patch
securities, better technologies, and the needs of the people using it. This ongoing
process is called software evolution. Understanding and managing software
evolution is crucial, because it is essential to keep technology working properly
and in a solid way.
Lehman et al. [139] are pioneers in the research field of software evolution.

Their work, grounded in empirical studies of large-scale industrial systems such
as IBM’s OS360, led to the formulation of Lehman’s Laws of Evolution. Key
laws include the inevitability of continuing change, the tendency for increasing
complexity unless explicitly addressed, the necessity of continuing growth to
meet user needs, and the challenge of declining quality over time.
In addition, Godfrey et al. [70] outline a range of open questions and research

limitations in the software evolution field. These include suggestions on using
approaches and empirical studies to understand software evolution, and the
relevance of studying open-source software.

1

In 2023, there were over 4.5 billion developer contributions on GitHub, and
this number continues to rise annually.1 Dealing with this massive amount of
data calls for innovative solutions to analyze and understand what developers
are doing and guide them, especially when it comes to code changes.
By addressing specific problems of this research field, we aim to contribute

not only to better understanding software evolution but also with guidelines
and approaches that can be used by developers to build resilient software during
its evolution.

1.2 Challenges

We have identified three specific challenges in the field of software evolution.
These challenges are:

• Challenge 1 (C-1): Better information retrieval for software evolution.

• Challenge 2 (C-2): Understanding patterns of software evolution made by
developers.

• Challenge 3 (C-3): Automatically performing code changes to fix bugs.

In the rest of this section, we provide an overview of these challenges, high-
lighting the problems and the opportunities.

1.2.1 Better Information Retrieval for Software Evolution

One of the fundamental challenges in software evolution lies in the efficient
identification and localization of code changes. As software evolves, retrieving
code changes and understanding where code edits are made become a non-
trivial task to learn from previous bug fixes and to build new datasets. This
challenge emphasizes the need for methodologies and approaches that focus
on the task of searching for code changes, ensuring a systematic and effective
approach for this information retrieval problem.

1https://github.blog/2023-11-08-the-state-of-open-source-and-ai/

2 1 | Introduction

https://github.blog/2023-11-08-the-state-of-open-source-and-ai/

1.2.2 Understanding the Evolution Patterns of Developer Code Changes

This challenge is crucial for optimizing development workflows. Researchers
need to analyze developer behavior, including commit patterns and adoption
of new programming language features, to gain insights into how developers
perform code changes. Exploring software evolution history, code changes and
collaborative development strategies help the development of improved method-
ologies to ensure developers have guidelines for effective software evolution,
including code maintenance.

1.2.3 Automatically Performing Code Changes to Fix Bugs

Automating code changes, particularly in the context of bug fixing, is a significant
challenge in software evolution. The necessity for automated approaches that
can fix bugs, without compromising the integrity of the codebase, is critical. This
is particularly relevant in large-scale projects where the manual fix of every bug
can be overwhelming for the developers. Moreover, automating code changes to
fix bugs contributes to the overall reliability and stability of software systems,
ensuring that issues are accurately addressed. The successful implementation of
automated bug-fixing mechanisms not only streamlines the development process
but also leads to the delivery of high-quality software.

Summary: We have identified three key challenges. The first challenge in-
volves the necessity for improved information retrieval methods in software
evolution. The second challenge underlines the importance of understand-
ing developers’ code change patterns to optimize development workflows.
The third challenge is that developers spend large amounts of time manually
fixing bugs, and this task can be automated.

1.2 | Challenges 3

1.3 Thesis Statement

Given the three challenges discussed above, this dissertation argues that:

Thesis Statement: The technical challenges of software evolution can be
addressed using a mix of program analysis, information retrieval, and deep
learning approaches.

The usage of program analysis, information retrieval, and deep learning (DL)
in the context of software evolution can provide a comprehensive and effective
approach to address the selected challenges by their complementary strengths:

• Program Analysis. We choose program analysis due to its precision in
understanding code [8, 54, 199]. It can produce a detailed analysis of
source code, allowing for the identification of potential bugs, optimization
opportunities, and overall enhancement of code quality. By checking
codebases, program analysis provides a useful and accurate understanding,
contributing to effective debugging and code improvement processes [72].

• Information Retrieval. We motivate the selection of information retrieval
by its capability to handle the vast amount of data [53, 74]. In the con-
text of software development, especially in open-source projects with
numerous contributors, managing and extracting relevant information
from large datasets become crucial. Information retrieval techniques assist
in efficiently navigating through these vast datasets [147], facilitating
the extraction of valuable insights, trends, and key information related to
code changes, repository contributions, and collaborative development
efforts [130].

• Deep Learning. We use deep learning because it is proficient in capturing
statistical patterns [71]. As software continually evolves, deep learning
algorithms excel in discerning complex patterns and trends that may not
be apparent through rule-based approaches. Leveraging neural networks
and the attention mechanism [255], deep learning enhances the ability
to recognize and adapt to software evolution, providing valuable help for
potential issues and opportunities for code optimization [280].

4 1 | Introduction

This integrated approach not only addresses the challenges posed by software
evolution but also enhances the efficiency and efficacy of the entire development
lifecycle. As a result, this dissertation tackles these three challenges through
research projects that focus on advancing automated code change search engines
(C-1), conducting an empirical study on software evolution to better understand
specific code change patterns made by developers (C-2), and developing an
automatic program repair technique to empower software developers with an
effective and precise approach (C-3).

1.4 Contributions

To support the thesis statement given above, we present four original research
contributions. Figure 1.1 shows the overview of approaches presented in this
dissertation. These works describe the state of the art of code search (Chap-
ter 2), advance the fields of searching for code changes (Chapter 3), study the
evolution of type annotations in Python (Chapter 4), and the field of automatic
program repair for Python type errors (Chapter 5). In this section, we outline the
contributions and research methods [241] faced in each phase of our research
and detail the specific contributions made.

IEEE TSE ESEC/FSE 22ACM CSUR

 "Code Search:
A Survey of Techniques
for Finding Code"

"DiffSearch: A Scalable
and Precise Search
Engine for Code Changes"

"The evolution of type
annotations in Python:
an empirical study"

"PyTy: Repairing
Static Type Errors
in Python"

ICSE 24

3
Chapter

4
Chapter

5
Chapter

2
Chapter

ACM SIGSOFT
Distinguished
Paper Award

2nd Winner
at ACM SRC

ICSE 22

Figure 1.1: Overview of the topics covered in this dissertation.

1.4 | Contributions 5

1.4.1 Code Search Survey

Chapter 2 summarizes 30 years of research on code search, giving a compre-
hensive overview of challenges and techniques that address them. We discuss
the kinds of queries that code search engines support, how to preprocess and
expand queries, different techniques for indexing and retrieving code, and ways
to rank and prune search results.

Research Method: Literature Review. A comprehensive literature review
serves as the foundational researchmethod, involving the collection and synthesis
of existing knowledge and research findings related to code search engines.

Contributions. Our survey reveals promising directions for future investi-
gations. Diversifying search scenarios emerges as a key prospect, including
cross-language searches and delving into version histories. Integrating code
search with tools like code completion and clone detection presents an exciting
frontier, and the integration of advanced deep learning models holds significant
promise for improving search outcomes, potentially encouraging wider adoption
by developers. Additionally, recognizing the necessity for standardized datasets
and benchmarks is interesting, facilitating consistent evaluation and comparison
as crucial steps in advancing the field of code search.

Challenge: C-1. To have an impact on the challenge C-1 of achieving better
information retrieval for code changes, we need to understand the state-of-the-
art in information retrieval for code. Navigating the extensive literature of code
search engines is not an easy job. The sheer volume of existing research can
be overwhelming, making it difficult to understand the current state of the art
and focus on areas that could benefit from improvements. Providing a forward-
looking perspective on future work, we guide researchers and developers in
aligning their efforts with emerging trends and unresolved issues for C-1.

6 1 | Introduction

1.4.2 Searching for Code Changes

Chapter 3 presents DiffSearch, a search engine for code changes that, given
a query that describes a code change, returns a set of changes that match the
query in a few seconds.

Research Method: Technical Tool Development. This research method in-
volves the development of an approach, DiffSearch, designed to address specific
challenges in code change retrieval.

Contributions. DiffSearch is enabled by three key contributions. First, we
present a query language that extends the underlying programming language
with wildcards and placeholders, providing an intuitive way of formulating
queries that is easy to adapt to different programming languages. Second, to en-
sure scalability, the approach indexes code changes in a one-time preprocessing
step, mapping them into a feature space, and then performs an efficient search
in the feature space for each query. Third, to guarantee precision, i.e., that any
returned code change indeed matches the given query, we present a tree-based
matching algorithm that checks whether a query can be expanded to a concrete
code change.

Challenge: C-1. We continue to address C-1, designing a search engine that
searches for code changes. Our approach supports different usage scenarios
to address C-1. First, the approach supports users interested in finding one
specific code change, e.g., when searching through the history of their own
project to find some change done by a colleague. Second, DiffSearch supports
users interested in finding multiple code changes, e.g., when searching through
a set of popular open-source projects to find examples of typical ways to refactor
a specific API usage. Third, the approach supports users interested in finding
many code changes, e.g., to build a large-scale dataset to train a neural model.
Finally, DiffSearch can also be configured to retrieve all code changes that match
a query, e.g., to quantify how often specific changes occur in practice.

1.4 | Contributions 7

1.4.3 Study of Python Type Annotation Evolution

Chapter 4 presents the first large-scale empirical study on the evolution of type
annotations in Python. The goal of this study is to understand the evolution and
adoption rate of Python type annotations, as well as to identify any patterns or
strategies that developers may follow when using them.

Research Method: Empirical Study. This research method involves an em-
pirical study focused on analyzing real-world Python projects to investigate the
adoption and evolution of type annotations.

Contributions. Our work analyzes a large dataset comprising over 9,655
Python projects and 1,123,393 commits. This deep investigation aims to ad-
dress questions surrounding adoption rates, the evolution of type annotations,
and their correlation with type errors. Our main contributions are the find-
ings extracted from this comprehensive study, that offer valuable insights for
both researchers and developers. For example, there is a positive trend in the
adoption of type annotations, presenting an important opportunity for both
researchers and practitioners to explore and leverage this evolving trend. Once
introduced, type annotations tend to persist for a long time, emphasizing their
lasting impact on repositories. Furthermore, the study underlines that not ev-
ery element requires annotation; self-explanatory elements often do not need
type annotations. Finally, the study finds that a higher volume of annotations
correlates with increased efficacy in detecting type errors.

Challenge: C-2. We address C-2 by extracting a huge number of type an-
notations from commits, a crucial step in analyzing a large dataset focusing
on these patterns in software evolution and Python type errors. The rise in
popularity of type annotations suggests developers should adopt this practice,
especially in projects with numerous contributors. Our study supports adding
type annotations, revealing benefits such as increased type error detection with
more type annotations. Improving the integration of type checking into the
development process, given that many commits contain type errors but are still
committed, presents a promising research direction.

8 1 | Introduction

1.4.4 Automatic Program Repair for Python Type Errors

Chapter 5 introduces PyTy, the first Automatic Program Repair (APR) approach
designed specifically to fix static type errors in Python. Guided by a preliminary
study on how developers fix type errors, our findings reveal recurring fix patterns
and underscore the value of location and error message information provided by
type checkers. Based on this study, PyTy is designed as a data-driven approach
using a pre-trained model and transfer learning.

Research Method: Preliminary Study & Technical Tool Development. This
research method combines a preliminary study and the development of a tech-
nical tool (PyTy) based on the findings of the preliminary study.

Contributions. We start with a preliminary study to understand strategies
used by developers when fixing Python type errors. The objective is to find
insights that contribute to the development of an automated approach, improv-
ing the type error fixing process for Python. After the preliminary study, we
introduce PyTy, an automated program repair tool designed to address type
errors in Python. This approach integrates gradual type checking with delta
debugging and uses cross-lingual transfer learning. Moreover, PyTy showcases
its effectiveness by surpassing previous techniques in terms of error removal. To
substantiate these claims, we build and use the PyTyDefects dataset, comprising
real-world type error-fix pairs sourced from GitHub repositories. Empirical eval-
uations demonstrate the effectiveness of PyTy in efficiently repairing type errors
using benchmarks and in the wild with 20 pull requests accepted by developers.

Challenge: C-3. We address C-3, tackling the task of automatically fixing type
errors in Python. We build PyTyDefects and we use it in combination with a
transfer learning approach. We use a type checker as fault localization and to
automatically verify the fix. Overcoming the previous limitations is crucial to
establish a robust automated system that can reliably address and repair type
errors in Python. These advancements to address C-3 can help developers to
build more efficient software fixing type errors in Python.

1.4 | Contributions 9

Summary: We present four original research contributions: a survey
on code search, a scalable and precise search engine for code changes, a
large-scale study of type annotation evolution in Python, and an automated
program repair for Python type errors. These contributions collectively
advance the state of the art in software evolution, empowering developers
with efficient and effective approaches to tackle the selected challenges.

1.5 Publications and Resources

This thesis is based on four research projects. Three of them have already been
published in top-tier journals and conferences. We have used information from
these past works in this thesis. Also, we have freely shared our implementation
and datasets so others can use and test them (Table 1.1).2 This helps others
check our work, use it in their own studies, and makes our tools easy to obtain
for anyone interested.

• Chapter 2: L. Di Grazia, M. Pradel. ‘Code Search: A Survey of Techniques
for Finding Code’. In: ACM Comput. Surv. (2022) [42].

• Chapter 3: L. Di Grazia, P. Bredl, M. Pradel. ‘DiffSearch: A Scalable
and Precise Search Engine for Code Changes’. In: IEEE Transactions on
Software Engineering 49.4 (2023) [41]. Second winner at ICSE 2022
Student Research Competition.

• Chapter 4: L. Di Grazia, M. Pradel. ‘The Evolution of Type Annotations in
Python: An Empirical Study". In: Proceedings of the 30th ACM Joint Euro-
pean Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering. ESEC/FSE 2022 [43]. Won ACM SIGSOFT
Distinguished Paper Award.

• Chapter 5: Y. Chow, L. Di Grazia, M. Pradel. "PyTy: Repairing Static Type
Errors in Python". 2024 IEEE/ACM 46th International Conference on
Software Engineering (ICSE) [37].

2https://github.com/acmsigsoft/open-science-policies

10 1 | Introduction

https://github.com/acmsigsoft/open-science-policies

Table 1.1: Mapping between chapters and their respective resources.

Chapter Implementation and Datasets

Chapter 2 –
Chapter 3 http://diffsearch.software-lab.org
Chapter 4 https://github.com/sola-st/PythonTypeAnnotationStudy
Chapter 5 https://github.com/sola-st/PyTy

1.5 | Publications and Resources 11

http://diffsearch.software-lab.org/diffsearch
https://github.com/sola-st/PythonTypeAnnotationStudy
https://github.com/sola-st/PyTy/

Ch
ap
te
r 2

Code Search: A Survey of
Techniques for Finding Code

The immense amounts of source code provide ample challenges and opportuni-
ties during software development. To handle the size of code bases, developers
commonly search for code, e.g., when trying to find where a particular feature is
implemented or when looking for code examples to reuse. To support developers
in finding relevant code, various code search engines have been proposed. This
chapter surveys 30 years of research on code search, giving a comprehensive
overview of challenges and techniques that address them. We discuss the kinds
of queries that code search engines support, how to preprocess and expand
queries, different techniques for indexing and retrieving code, and ways to rank
and prune search results. Moreover, we describe empirical studies of code search
in practice. Based on the discussion of prior work, we conclude the chapter with
an outline of challenges and opportunities to be addressed in the future.

13

2.1 Introduction

Many kinds of information are stored in digital systems, which offer convenient
access, large storage capacities, and the ability to process information automat-
ically. To enable people to quickly find digitally stored information, research
on information retrieval has led to powerful search engines. Today, commercial
search engines are used by billions of people every day to retrieve various kinds
of information [229], such as textual information, images, or videos.
As software is becoming increasingly important in various aspects of our lives,

a particular kind of information is being produced in incredibly large amounts:
source code. A single, complex software project, such as the Linux kernel or
modern browsers, easily comprises multiple millions of lines of source code. At
the popular open-source project platform GitHub, more than 60 million new
projects have been created in 2020 alone [68]. The sheer amount of existing
source code leads to a situation where most code to be written by a developer
either has already been written elsewhere, or at least, is similar to some code
that has already been written [103, 210, 279].
To benefit from existing source code and to efficiently navigate complex

code bases, software developers often search for code [223]. For example, a
developer may search through a code base she is working on to find where some
functionality is implemented, to understand what a particular piece of code is
doing, or to find other code locations that need to be changed while fixing a
bug. Beyond the code base a developer is working on, developers also commonly
search through other projects within an organization or through open-source
projects. For example, a developer may look for examples of how to implement a
specific functionality, search for usage examples of an application programming
interface (API), or simply cross-check newly written code against similar existing
code. We call these and related activities code search. To support developers
during code search, code search engines automatically retrieve code examples
relevant to a given query from one or more code bases.
At a high level, the challenges for building a successful code search engine

are similar to those in general information retrieval: provide a convenient query-
ing interface, produce results that match the given query, and do so efficiently.
Beyond these high-level similarities, code search comes with interesting addi-

14 2 | Code Search: A Survey of Techniques for Finding Code

tional opportunities and challenges. As programming languages have a formally
defined syntax, one can unambiguously parse source code, and then analyze
and compare it based on its structural properties [1]. Moreover, source code
also has well-defined run-time semantics, as given by the specification of the
programming language, e.g., for Java [73], C++ [104], or JavaScript [50]. That
is, in contrast to natural language text and other kinds of information targeted
by search engines, the meaning of a piece of source code is, at least in principle,
well defined. In practice, the code in a large code corpus often is written in
a diverse set of programming languages, building on various frameworks and
libraries, and using different coding styles and conventions [101]. As a result,
code search engines must strike a balance between precisely analyzing code in a
specific language and supporting a wide range of languages [230]. Finally, the
language in which a query is formulated may not be the same as the language
the search results are written in. For example, many code search engines accept
natural language queries or behavioral specifications of the code to retrieve,
which requires some form of mapping between such queries and code [182].
Motivated by the need to search through the huge amounts of available source

code and by the challenges and opportunities it implies, code search has received
significant attention by researchers and practitioners. The progress made in
the field is good news for developers, as they can benefit from increasingly
sophisticated code search engines. At the same time, the impressive amount of
existing work makes it difficult for new researchers and interested non-experts
to understand the state-of-the-art and how to improve upon it. This chapter
summarizes existing work on code search and describes how different approaches
relate to each other. By providing a comprehensive survey of 30 years of work
on code search, we hope to provide an overview of this thriving research field.
Based on our discussion of existing work, we also point out open challenges and
opportunities for future research.
Figure 2.1 shows the number of papers we discuss per year of publication,

illustrating the increasing relevance of the topic. Our survey primarily targets
full research papers, i.e., more than six pages, from top-ranked conferences
and journals.3 In addition, we include other publications, e.g., in workshop

3Specifically, venues ranked A* or A in the CORE ranking: http://portal.core.edu.au

2.1 | Introduction 15

http://portal.core.edu.au/conf-ranks

1990 1995 2000 2005 2010 2015 2020
Year of publication

0

2

4

6

8

10

12
Nu

m
be

r o
f p

ap
er

s

Total papers: 109

Figure 2.1: Papers on code search discussed in this chapter.

Offline Online

Code corpus Query

Preprocessing
& expansion

Indexing
 or
Training

Retrieval
Candidate
search results

Ranking
& pruning

Search
results

Section 2.2

Section 2.3

Section 2.4

Empirical studies

Section 2.5

Section 2.6

Figure 2.2: Overview of the topics covered in this chapter.

16 2 | Code Search: A Survey of Techniques for Finding Code

proceedings, papers on arXiv, and technical reports, as well as publications at
lower-ranked venues, if and only if they are recent (less than two years), have
had a significant impact (more than ten citations), or provide a very strong
match with the topic of this survey. We use three different platforms to search
for papers: Google Scholar4, the ACM Digital Library5, and DBLP6. To find an
initial set of papers, we search with queries "code search" and "code retrieval".
Afterwards, we iteratively refined the set of considered papers by following
citations, both backward and forward, until reaching a fixed point.
There are several research fields related to code search that are out of the

scope of this chapter. In particular, we do not discuss in detail work on general
software repository mining, e.g., to extract patterns or programming rules [113],
searching for entire applications, e.g., in an app store [77, 164], and query-based
synthesis of new code examples [84]. Moreover, we do not cover in detail work
on code clone detection [221] and code completion [25, 214], as those are
related but different problems. Code clone detection aims at finding pieces of
code that are semantically, and perhaps even syntactically, equivalent to each
other, whereas code search aims at finding code that offers more details than a
given query. Code completion can be seen as a restricted variant of code search,
where the code a developer has already written serves as a query to find the
next few tokens or even lines to insert. An important difference is that code
search tries to retrieve existing code as-is, whereas code completion synthesizes
potentially new code fragments.
Figure 2.2 outlines the components a typical code search engine is built from,

and at the same time, gives an overview of the topics covered in this chapter.
Most code search engines have an offline part, which indexes a code corpus or
trains a machine learning model on a code corpus, and an online part, which
takes a user-provided query and retrieves code examples that match the query.

• Section 2.2 presents different kinds of queries accepted by code search
engines, including natural language, code snippets, formal specifications,
test cases, and queries written in specifically designed querying languages.

4https://scholar.google.com/
5https://dl.acm.org/
6dblp.uni-trier.de/

2.1 | Introduction 17

https://scholar.google.com/
https://dl.acm.org/
dblp.uni-trier.de/

• Section 2.3 describes how code search engines preprocess and expand a
given query, e.g., by generalizing terms in a natural language query or by
lifting a given code snippet to a richer representation.

• Section 2.4 presents the core component of a code search engine, which
indexes code examples or trains a machine learning model, and then
retrieves examples that match a query. We discuss and compare several ap-
proaches based on how they represent the code and what kind of retrieval
technique they use.

• Section 2.5 presents different techniques for ranking and pruning search
results before presenting them to the user, e.g., based on similarity scores
between code examples and the query, or based on clustering similar
search results.

• Section 2.6 discusses empirical studies of developers and how they interact
with code search engines, which connects the research described in the
other sections to adoption in practice.

• Section 2.7 outlines several open challenges and research directions for
future work.

Prior work surveys code search techniques from different perspectives than this
chapter. Garcia et al. [66] summarize code search-related tools presented until
2006, with a focus on tools aimed at software reuse. Another survey [46] is about
techniques for locating where in a project a particular feature or functionality is
implemented. While being a problem related to code search, feature location
focuses on searching through a single software project, instead of large code
corpora, and on the specific use case of locating a feature, instead of the wider
range of use cases covered by code search. A short paper by Khalifa [120]
discusses existing techniques for code search, focusing on information retrieval-
based and deep learning-based approaches, but it covers only five papers. Finally,
another survey of code search techniques [147] focuses on general publication
trends, application scenarios where code search is used, and how search engines
are evaluated. In contrast, this chapter focuses more on the technical core of
code search engines, including different querying languages, pre-processing
of queries, ranking and pruning of results, and also empirical studies of code

18 2 | Code Search: A Survey of Techniques for Finding Code

search in practice.

2.2 Queries for Searching Code

The starting point of every search is a query. We define a query as an explicit
expression of the intent of the user of a code search engine. This intent can be
expressed in various ways, and different code search engines support different
kinds of queries. The designers of a code search engine typically aim at several
goal when deciding what kinds of queries to support:

• Ease. A query should be easy to formulate, enabling users to use the code
search engine without extensive training. If formulating an effective query
is too difficult, users may get discouraged from using the code search
engine.

• Expressiveness. Users should be able to formulate whatever intent they
have when searching for code. If a user is unable to express a particular
intent, the search engine cannot find the desired results.

• Precision. The queries should allow specifying the intent as unambiguously
as possible. If the queries are imprecise, the search is likely to yield
irrelevant results.

These goals are non-trivial to reconcile, and different code search techniques
balance this trade-off in different ways. Figure 2.3 shows a taxonomy of the
kinds of queries supported by existing approaches. Broadly, we can distinguish
between informal queries, formal queries, and combinations of the two. The
numbers associated with the leaf nodes of the taxonomy indicate how many
papers support each kind of query. The figure also shows how well different
approaches achieve the three goals from above. The color of the boxes containing
“Ease”, “Precision”, and “Expressiveness” indicate the support for these goals,
where green means strong support, yellow means medium support, and red
means little support. The remainder of this section discussed the different kinds
of queries in more detail, following the structure lined out in the taxonomy.

2.2 | Queries for Searching Code 19

Queries

Informal

Free-form

Formal

Existing
programming
language

Custom
querying
language

Input-output
examples

Hybrid

38

19 11 8

3

Ease

Ease Ease

Ease

Ease

Expressiveness

Expressiveness

Expressiveness

Expressiveness Expressiveness

Precision

Precision Precision

Precision

Precision

Figure 2.3: Taxonomy of code search queries and number of approaches accept-
ing each kind of query.

2.2.1 Free-Form Queries

Free-form queries are an informal way of specifying the intent of a code search.
Such a query may describe in natural language the functionality of the searched
code, e.g., “read file line by line”. Free-form queries may also contain program-
ming language elements, e.g., when searching for identifier names of a specific
API, such as “FileReader close”.
Free-form queries are the most commonly used kind of query in the approaches

we survey [2, 12, 29, 30, 31, 34, 44, 48, 49, 80, 82, 95, 96, 143, 145, 146, 148,
149, 151, 152, 156, 159, 165, 169, 182, 184, 208, 209, 222, 227, 230, 236, 246,
256, 260, 261, 268, 276, 282]. They are attractive as users can easily formulate
a query, similar to using a general-purpose web search engine, with a high level
of expressiveness. On the downside, free-form queries risk being imprecise. One

20 2 | Code Search: A Survey of Techniques for Finding Code

reason is that natural language terms are ambiguous. For example, the term
“float” may refer to either a data type or to a verb. Another reason is that the
vocabulary in a query may not match the vocabulary used in a code base. For
example, a search term “array” may refer to a data structure that syntactically
occurs as two square brackets in Java or Python [256].
Because free-form queries are extremely versatile, different code search en-

gines compare them against different kinds of data. One set of approaches
compares free-form queries against natural language text associated with code,
e.g., API documentation [30], commit messages [31], or words in the a project’s
metadata [165]. Another set of approaches compares queries against the source
code, e.g., by matching the query against signatures of fields and methods [95,
96] or against all identifiers in the code [152, 159, 230].
The informal nature of free-form queries may make it difficult to accurately

match a query against a code snippet, e.g., because of a vocabulary mismatch
between the two. For example, plain English queries, such as “match regular
expression” or “read text file” [208], may not match the terms used in the
corresponding API methods. A popular way to mitigate this mismatch is to
project natural language words and source code identifiers into a common
vector space [182] via learned word embeddings, such as Word2Vec [170].
Another way to address the limitations of free-form queries is to preprocess and
expand queries, which we discuss further in Section 2.3.

To avoid the ambiguity of free-form queries and because source code is anyway
written in a formal language, many code search engines support some kind of
formal queries, which we discuss in the following. The commonality of these
queries is that they are written in a language with a formally specified syntax,
and sometimes also formally defined semantics.

Summary: Free-form queries are easy to type and highly expressive, but
they can be ambiguous and less precise than other, more formal kinds of
queries.

2.2 | Queries for Searching Code 21

2.2.2 Queries Based on Existing Programming Languages

As a first kind of formal query, we start by discussing queries based on existing
programming languages. A query here is a snippet of code, possibly using
some additional syntax not available in the underlying programming language.
Because developers already know the programming language they are using,
such queries are easy to formulate. The expressiveness and precision of code
queries varies depending on the intent of the user and the specific search engine.
Queries based on existing programming languages roughly fall into three

categories:

1. Plain code. The most simple kind of code query are snippets of code as
defined by the syntax of the underlying programming language [15, 62,
124, 137, 138, 154, 163, 177, 249, 286, 287]. For example, the following
query provides a partial implementation, for which the user seeks ways to
extend it [15]:

1 try {
2 File file = File.createTempFile("foo", "bar");
3 } catch (IOException e) { }

2. Code with holes. Instead of letting the search engine figure out where to
extend a given code snippet, some search engines support queries that
explicitly define one or more holes in the given code [172, 175]. For
example, this query specifies that the user looks for how to complete the
body of the given method [175]:

1 public void actionClose(JButton a, JFrame f) {
2 __CODE_SEARCH__;
3 }

3. Code with pattern matching symbols. A very precise way of describing the
code to search is a query in an extension of the underlying programming
language that adds patterns matching symbols. For example, such queries
may define where an expression, here denoted with #, or a statement,
here denoted with @, is missing [195, 196]:

1 if (# = #) @;

22 2 | Code Search: A Survey of Techniques for Finding Code

Such a query provides an abstract template for the code to search, and the
search engine tries to retrieve some or all code snippets that the template
can be extended into.

A recurring challenge for search engines that accept queries written in (vari-
ants of) existing programming languages is the problem of parsing incomplete
code snippets [124, 172, 266]. An off-the-shelf grammar of the programming
language may not be able to parse a query because the query does not encom-
pass a complete source code file or because the code is incomplete. One way to
address this problem [124] is to heuristically fix a given code fragment, e.g., by
surrounding it with additional code.
A popular kind of application of search engines that accept partial code snip-

pets is as a source code recommendation tool. To ensure that the recommended
code matches the current context a developer is working in, e.g., the current
file and project, some approaches consider the code around the actual query as
context available to the search engine. For example, Holmes and Murphy [99]
and Brandt et al. [22] propose to integrate code search directly into the IDE.
Other approaches [175, 249, 287] spontaneously search and display example
code snippets while the developer is editing a program. The underlying idea
of these approaches is that the user should not spend time on formulating the
query, but simply uses the already typed code. Finally, general code completion
systems also predict code based on the existing code context while a developer
is writing code. For example, GitHub’s Copilot7 suggests multiple lines of code
using a large-scale generative neural language model [33]. In contrast to code
search, code completion synthesizes suitable code, regardless of whether exactly
this code has already been written anywhere, whereas code search retrieves
existing code as-is.
Instead of queries in a high-level programming language, some code search

engines accept binary code as a query. For example, an approach by David and
Yahav [40] accepts a function in its compiled, binary form as a query and then
searches for similar functions in a corpus of binaries. Another approach accepts
an entire binary as the query, trying to find other binaries that may be compiled
from the same or similar source code [122]. Binary-level code search has several

7https://copilot.github.com/

2.2 | Queries for Searching Code 23

https://copilot.github.com/

applications in security, e.g., to check for occurrences of known vulnerable code,
and in copyright enforcement, e.g., to find code copied without permission.

Summary: Program language queries are easy to type because users do
not have to learn a new language, but the expressiveness and precision of
code queries varies depending on the intent of the user and the specific
search engine.

2.2.3 Custom Querying Languages

A common alternative to queries based on an existing programming program-
ming language are custom querying languages. They provide a high degree of
expressiveness and precision, at the expense of reduced ease of use, because
users need to learn the querying language.

Logic-based Querying Languages

The most prevalent kind of custom querying languages is first-order logic pred-
icates that describe properties of the code to search. For example, Janzen
and Volder [105] extend the logic programming language TyRuBa8 to support
queries such as the following, which searches for a package with a class called
“HelloWorld”

1 package(?P, class, ?C), class(?C, name, HelloWorld)

In a similar vein, Hajiyev, Verbaere, and de Moor [86] describe a code querying
technique based on Datalog queries. Datalog is a logic-based language that, given
a set of elements and relationships between the elements, answers queries. The
approach considers program elements, e.g., classes and methods, and several
relationships between them, e.g., the fact that a class inherits from another
class, or that a class has a method. A user can query a code base by formulating
logic-based queries over these elements and relationships, such as asking for all
methods in a class called “A”, where “A” inherits from a class called “B”. Other

8http://tyruba.sourceforge.net/

24 2 | Code Search: A Survey of Techniques for Finding Code

http://tyruba.sourceforge.net/

approaches support logical queries over identifiers and structural relationships
between them [234, 259, 262].
Several languages allow for predicates beyond describing program elements

and their relationships. One example is to also support meta-level properties,
such as how many imports a file has. For example, the query language by Martie,
LaToza, and van der Hoek [161] allows for queries such as:

1 import count > 5 AND extends class FooBar

The Alice search engine [238] supports a kind of semantic predicates, e.g., to
search for code that calls the readNextFile method in a loop and handles an
exception of a type FileNotFoundException.

Significant Extensions of Existing Programming Languages

Instead of logic-based querying languages, several search engines accept queries
in custom languages that significantly extend an existing programming language.
Similar to the kinds of queries discussed in Section 2.2.2, such queries contain
fragments of an existing programming language. One such language is by Inoue
et al. [103] who support different kinds of wildcard tokens that match any single
token, any token sequence, or any token sequence discarding paired brackets,
respectively. In addition, their queries may use popular regular expression
operators for choice, repetition, and grouping to enhance the expressiveness.
For example, the following query will search for nested if-else clauses:

1 $(if $$ else $) $+

Another significant extension of an existing programming language is the
"semantic patch language" of Coccinelle [130]. It allows for describing a patch,
as produced by the popular diff tool, augmented with metavariables that match
a specific piece of code and with a wildcard operator. A query hence describes
a set of rules that the old and the new code must match, which then used to
search for specific code changes in the version history of a project [129].

2.2 | Queries for Searching Code 25

Other Custom Languages

A custom querying language by Premtoon, Koppel, and Solar-Lezama [205]
describes code in a way that can be mapped to a program expression graph,
which describes computations via operator nodes and dataflow edges [251].
In contrast to the above approaches, their queries are not specific to a single
programming language, but can be used to search through projects in multiple
languages.

Summary: Custom querying language queries can offer high expressiveness
and precision, but are (at least initially) less easy to type because users have
to learn the custom language first.

2.2.4 Input-Output Examples as Queries

All kinds of queries discussed so far focus on the source code itself, but neglect
an important property of code that distinguishes it from other kinds of data
supported by search engines, such as text: executability. To exploit this property,
some search engines support queries that are behavioral specifications and that
characterize examples of the code behavior. Such queries typically come in the
form of one or more input-output examples of the code to search.
The pioneering work by Podgurski and Pierce [200] is the first to propose

input-output examples as queries, and other approaches adopt and improve this
idea [109, 215, 242, 243, 244]. For example, these search engines enable users
to search for code that given the input “susie@mail.com” produces “susie” [242].
Beyond supporting developers who search for specific kinds of code, another
application of input-output-based code search is to find code fragments that can
be used in automated program repair [117].
An extended form of input-output examples are queries in the form of exe-

cutable test cases [140, 141]. Adapting the test-driven development paradigm,
the basic idea is that a developer first implements test cases for some functional-
ity and then searches for existing code that provides the desired functionality.
Test cases here serve two purposes: First, they define the behavior of the desired
code to be searched. Second, they test the search results for suitability in the

26 2 | Code Search: A Survey of Techniques for Finding Code

local context.

Summary: Using input-output examples as queries allows for precisely
specifying the desired behavior, but providing sufficiently many examples
to fully express this behavior may require some effort.

2.2.5 Hybrids of Informal and Formal Queries

A few approaches support not only one kind of query, but hybrid queries that
combine multiple of the kinds described above. One example is the work by Reiss
[215], which in addition to input-output examples supports free-form queries.
For example, a user may search for a method that mentions “roman numeral”
and produces “XVII” for the input “17”. Another kind of hybrid query combines
free-form, natural language terms with references to program elements [266],
e.g., “sort playerScores in ascending order”, where “playerScores” refers to
a variable in the code. Finally, Martie, Hoek, and Kwak [160] mix free-form
queries and logical queries over code properties. For example, a query may ask
for code that matches the keywords "http servlet", extends a class httpservlet,
and has more than three imports.

2.3 Preprocessing and Expansion of Queries

The query provided by a user may not be the best possible query to obtain
the results a user expects. One reason is that natural language queries suffer
from the inherent imprecision of natural language. Another reason is that the
vocabulary used in a query may not match the vocabulary used in a potential
search result. For example, a query about “container” is syntactically different
from “collection”, but both refer to similar concepts. Finally, a user may initially
be unsure what exactly she wants to find, which can cause the initial query to
be incomplete.
To address the limitations of user-provided queries, approaches for preprocess-

ing and expanding queries have been developed. We discuss these approaches by
focusing on three dimensions: (i) the user interface, i.e., if and how a user gets
involved in modifying queries, (ii) the information used to modify queries, i.e.,

2.3 | Preprocessing and Expansion of Queries 27

what additional source of knowledge an approach consults, and (iii) the actual
technique used to modify queries. Table 2.1 summarizes different approaches
along these three dimensions, and we discuss them in detail in the following.

Table 2.1: Overview of approaches for preprocessing and expansion of queries.

Pa
ul
an
d
Pr
ak
as
h

[1
96
]

W
an
g,
Lo
,a
nd
Ji
an
g

[2
59
]

Sh
ep
he
rd
et
al
.[
23
0]

Si
sm
an

an
d
Ka
k

[2
37
]

Lv
et
al
.[
15
6]

Lu
et
al
.[
15
2]

M
ar
tie
,L
aT
oz
a,
an
d

va
n
de
rH
oe
k
[1
61
]

Li
et
al
.[
14
3]

N
ie
et
al
.[
18
4]

M
ar
tie
,
H
oe
k,
an
d

Kw
ak
[1
60
]

Si
rr
es
et
al
.[
23
6]

Ra
hm
an

an
d
Ro
y

[2
09
]

Lu
et
al
.[
15
1]

W
u
an
d
Ya
ng
[2
68
]

Li
et
al
.[
14
2]

User interface:
Transparent to user ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Based on (implicit) user feedback ✓ ✓ ✓ ✓

Information used to modify queries:
Initial search results ✓ ✓ ✓ ✓
Similarity of search terms ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
NL/code dataset ✓ ✓ ✓ ✓
Recurring code changes ✓

Technique used to modify queries:
Weigh search terms ✓ ✓
Add or replace search terms ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Lift query to richer representation ✓ ✓ ✓

2.3.1 User Interface of Query Preprocessing and Expansion Approaches

Transparent vs. interactive. The majority of code search engines that perform
some form of query preprocessing or expansion do so in a fully transparent way,
i.e., the user is not aware of this part of the approach. For example, Sisman and
Kak [237] propose to automatically expand queries using similar terms from
search results, while others transparently expand queries using dictionaries [143]
and synonymous [152]. An exception is the work by Martie, Hoek, and Kwak
[160] and Martie, LaToza, and van der Hoek [161], where the user interactively
reformulates queries based on keyword recommendations made by the search
engine. Another interactive approach [151] collects relations between words
from the source code, such as that one type name inherits from another, or that
a word is part of a compound word, and then removes irrelevant words using

28 2 | Code Search: A Survey of Techniques for Finding Code

an English dictionary. After this process the user can give a feedback about the
query and iterate the query refinement until satisfied.

User feedback. To improve the initially given queries, some approaches rely
on feedback by the user. Such feedback can be given explicitly, as in the work by
Martie, Hoek, and Kwak [160] and Martie, LaToza, and van der Hoek [161],
where a user can up-rate or down-rate particular search results, which is then
used to show more or less search results with similar features. Instead of explicit
feedback, Sisman and Kak [237] rely on so-called pseudo relevance feedback
given implicitly through the highest-ranked search results retrieved for initially
given query. The approach then enriches the initial query with search terms
drawn from the initial search results. Another way of using implicit user feedback
is by observing what search results a user clicks on, which may provide valuable
information on what the user is searching for. The Cosoch approach exploits this
feedback in a reinforcement learning-based approach [142]. Their approach
tracks across multiple queries which search results a user selects, and tries to
maximize the normalized discounted cumulative gain (NDCG), which measures
the quality of a ranked list of search results.

Summary: User interfaces can help preprocessing queries in a transparent
way or using feedback from users.

2.3.2 Information Used to Modify Queries

Initial search results. Effectively modifying a query requires some information
in addition to the query itself. Several approaches use the results returned for
the initially provided query for this purpose [160, 161, 237]. A downside of
relying on initial search results to modify queries is that the search must be
performed multiple times before obtaining the final search results, which may
negatively affect efficiency.

Similarity of search terms and/or identifiers. A commonality of several
approaches for query preprocessing and expansion is to compare words or

2.3 | Preprocessing and Expansion of Queries 29

identifiers in a query with those in a potential search result through some
kind of similarity measure. One approach [237] builds on the observation that
terms in search results that frequently appear close to terms in the query may
also be relevant, and then expands the initial query with those words. Others
builds on domain-specific dictionaries [143] or on synonyms [152] found using
WordNet [135] to add or replace query terms with related terms. A more
recent alternative to curated databases of word similarities are learned word
embeddings, e.g., via Word2vec [170], which can help in revising queries [209].

NL/code datasets. A third kind of information used by several approaches
to revise queries are datasets of documents that combine natural language
and code. For example, Lv et al. [156] use API documentation to identify
which API a query is likely to refer to, and then expand the query accordingly.
Online discussion forums with programming-related questions and answers,
e.g., Stack Overflow also have been found to help in revising queries [184, 209,
236]. These approaches search online posts related to a given query, and then
extract additional relevant words, software-specific terms, and API identifiers to
augment the query. Since the questions and answers cover various application
domains and are curated based on feedback by thousands of developers, they
provide a valuable dataset to associate natural language words with related
programming terms.

Recurring code changes. Motivated by the observation that developers may
have to adapt a retrieved code example, e.g., to use the most recent version of an
API, Wu and Yang [268] expand queries to proactively consider such potential
code adaptations. At first, their approach mines recurring code changes from
version histories of open-source projects, which provides information such as that
a code token A is often changed to a code token B. Given a user query, they then
retrieve matching code examples, and if these examples include a frequently
changed token, say A, expand the query with the updated token, say B. With the
expanded query, the search engine hence will retrieve updated versions of the
code examples, freeing the developer from adapting the code manually.

30 2 | Code Search: A Survey of Techniques for Finding Code

Summary: To automatically modify queries, code search engines most
commonly use similarities between search terms and identifiers, as well as
corpora of natural language and code.

2.3.3 Techniques Used to Modify Queries

Weigh search terms. The perhaps most straightforward way of augmenting
a given search query is to weigh the given search terms. Several code search
engines implement this idea [209, 230], with the goal of giving terms that
are most relevant for finding suitable results at a higher weight. For example,
Rahman and Roy [209] estimate the weights of API class names by applying the
page rank algorithm [23] to an API co-occurrence graph.

Add or replace search terms. Another common technique is to add or re-
place terms in the given search query, e.g., by adding terms that are related
or synonymous to those already in the query. Lv et al. [156] propose a query
refinement technique specifically aimed at APIs. In a two-step approach, they
first identify an API that the query is likely to refer to, and then expand the
original query with identifier names related to this API. For example, for an
initial query “how to save an image in png format”, the approach may identify
the API method System.Drawing.Image.Save to be likely relevant, and hence,
adds the fully qualified method name into the search query.

Lift query to richer representation. To ease matching a query against poten-
tial search results, several approaches lift the query into a richer representation.
An early example is the SCRUPLE tool by Paul and Prakash [196]. It transforms
the query specified by the user with a pattern parser into an extended nondeter-
ministic finite automaton called code pattern automaton. Other approaches lift
queries into a graph representation. For example, Wang, Lo, and Jiang [259]
take a query formulated in a custom querying language and then transforms it
into a graph representation that expresses call relations, control flow relations,
and data flow relations. As another example, Li et al. [143] transform a natural

2.3 | Preprocessing and Expansion of Queries 31

language query into an “action relationship graph”, which expresses sequencing,
condition, and callback relationships between parts of the code described in the
query. For example, given a query “add class ’checked’ to element and fade in
the element”, their approach would infer that the two parts combined by “and”
are supposed to happen in sequence.

Summary: The most popular techniques to modify queries are using
weighing, adding, or replacing search terms, as well as lifting queries to a
richer representation.

2.4 Indexing or Training, Followed by Retrieval of Code

The perhaps most important component of a code search engine is about retriev-
ing code examples relevant for a given query. The vast majority of approaches
follows a two-step approach inspired by general information retrieval: At first,
they either index the data to search through, e.g., by representing features of
code examples in a numerical vector, or train a model that learns representations
of the data to search through. Then, they retrieve relevant data items based on
the pre-computed index or the trained model. To simplify the presentation, we
refer to the first phase as “indexing” and mean both indexing in the sense of
information retrieval and training a model on the data to search through.
The primary goal of indexing and retrieval is effectiveness, i.e., the ability to

find the “right” code examples for a query. To effectively identify these code
examples, various ways of representing code and queries to compare them
with each other have been proposed. A secondary goal, which is often at odds
with achieving effectiveness, is efficiency. As users typically expect code search
engines to respond within seconds [223], building an index that is fast to query
is crucial. Moreover, as the code corpora to search through are continuously
increasing in size, the scalability of both indexing and retrieval is important as
well [9].
We survey the many different approaches to indexing, training and retrieval

in code search engines along four dimensions, as illustrated in Figure 2.4. Sec-
tion 2.4.1 discuss what kind of artifacts a search engine indexes. Section 2.4.2

32 2 | Code Search: A Survey of Techniques for Finding Code

Table 2.2: Overview of approaches based on information retrieval technique
respect to kind of indexed information (1-3 rows) and kind of feature
extracted (4-6) rows.

IR technique

Feature
Vectors

Machine
Learning

Other

Indexed artifact:
Source code [14, 15, 44,

62, 122,
137, 138,
154, 182,
184, 230,
236, 268,
287]

[101, 227,
237, 238]

[40, 86, 99,
103, 143,
161, 195,
196]

Runtime behavior [200] [109, 172,
201, 244]

Natural language [12, 28, 34,
124, 165,
249]

[29, 82,
146, 175,
222, 246]

[31, 189]

Representation of indexed code:
Individual code elements [44, 122] [29, 34,

227]
[31, 103]

Sequences of code elements [12, 124,
249, 268]

[82] [40]

Relationships between code elements [15, 137,
138, 154,
156, 184]

[146, 172,
177, 246]

[18, 86, 99,
143, 195,
196]

describes different ways of representing the extracted information. Section 2.4.3
presents techniques for comparing queries and code examples with each other.
Table 2.2 summarizes the approaches along these first three dimensions. Finally,
Section 2.4.4 discusses different levels of granularity of the source code retrieved
by search engines.

2.4 | Indexing or Training, Followed by Retrieval of Code 33

/*
 * Interact with server via socket.
 */
serverSocket = new ServerSocket(port);
clientSocket = serverSocket.accept();
out = new PrintWriter(
 clientSocket.getOutputStream(), true);
in = new BufferedReader(new
InputStreamReader(clientSocket.getInputStream()));

Query:
"Find files
in directory"

Match?

Natural
language

Source code or
binary code

Runtime
behavior

Individual code
elements

Sequences of
code elements

Relations between
code elements

Machine
learning

Feature
vectors

Database Graph
matching

Solver-based
matching
x1 ∧ x2 ∧ x3

Code
snippets

Methods Classes Applications
or libraries

Artifacts that get indexed (Section 2.4.1)

Techniques to compare query
and code (Section 2.4.3)

Granularity of retrieved code
 (Section 2.4.4)

Representing the information for
indexing and retrieval (Section 2.4.2)

Figure 2.4: Overview of techniques for indexing and retrieval.

2.4.1 Artifacts That Get Indexed

When creating an index of code examples to retrieve, code search engines
consider different artifacts related to code.

Source Code and Binary Code

The most obvious, and by far most prevalent, artifact to index is the source
code itself. Many approaches target a high level programming language, such
as Java [11, 15, 44, 62, 86, 99, 138, 182, 238, 276, 287], JavaScript [137,
143], and C [195, 196]. Some search engines support not only one but multiple
languages [29, 101, 227], e.g., Sando [230] (C, C++, and C#), ccgrep [103]
(C, C++, Java, and Python), Aroma [154] (Hack, Java, JavaScript, and Python),
DGMS [145] (Java and Python), and COSAL [163] (Java and Python). Instead
of source code, some approaches focus on compiled code [40, 122], which is
useful, e.g., to find functions in binaries that are similar to known vulnerable
functions. These approaches first disassemble a given binary and then index
disassembled functions or entire binaries.

34 2 | Code Search: A Survey of Techniques for Finding Code

Runtime Behavior of Code

Instead of only statically analyzing and indexing code, some search engines
exploit the fact that source code can be executed by analyzing the runtime
behavior of the code to search through. Considering runtime behavior may be
useful, e.g., when two snippets of code have similar source code but nevertheless
perform different behavior. The first code search engine that considers runtime
behavior is by Podgurski and Pierce [200]. Their approach expects the user to
provide inputs to the code to find, and then searches for suitable code examples
by sampling the behavior of candidate code examples. Reiss [215] select can-
didates using keywords and then they apply different kinds of transformations
to have solutions with different behavior. To validate the dynamic behavior of
the candidates with respect to the requirements given by the user, they run a
set of test suites. Another line of work symbolically executes code to gather
constraints that summarize the runtime behavior [109, 244]. Finally, the COSAL
search engine [163] compares the behavior of code snippets based on an existing
technique for clustering code based on its input-output behavior [162].

Natural Language Information Associated with Code

Beyond the source code and its runtime behavior, another valuable artifact is
natural language information associated with code. For example, such infor-
mation comes in the form of comments, API documentation, commit messages,
and discussions in online question-answer forums. Several code search engines
leverage this information, in particular approaches that retrieve code based on
natural language queries, e.g., after training neural models on pairs of natural
language descriptions and source code [29, 246].
One group of approaches leverages regular comments and structured com-

ments that provide API documentation, e.g., by considering comments as key-
words to compare a query against [146] or by mapping code and natural lan-
guage into a joint vector space [82, 222]. Another direction is to consider commit
messages in a version control system, based on the assumption that the words in
a commit message describe the source code lines affected by the commit [31].

2.4 | Indexing or Training, Followed by Retrieval of Code 35

Finally, online discussion forums, such as Stack Overflow,9 provide a dataset of
pairs of code snippets and natural language descriptions, which several code
search engines use to associate natural language words and code [28, 34, 184].

Summary: The by far most common kind of artifact that gets indexed
are source code and binary code. However, there also are search engines
that index traces of runtime behavior and natural language information
associated with code.

2.4.2 Representing the Information for Indexing and Retrieval

After discussing what artifacts different approaches extract information from, we
now consider how this information is represented for indexing and retrieval. We
identify three groups of approaches, presented in the following with increasing
levels of complexity: representations based on individual code elements, on
sequences of code elements, and on relations between code elements.

Individual Code Elements

The first group of approaches focuses on individual code elements, e.g., tokens
or function calls, ignoring their order and any other kind of relationship they
may be in [31, 103]. To index the code examples, these approaches then
represent a code snippet as a set of code elements. One example is work that
represents a code example as a bag of tokens, and a natural language query
as a bag of words [34, 249]. Another approach represents binaries as a set of
tokens extracted from disassembled binaries [122]. Finally, Diamantopoulos,
Karagiannopoulos, and Symeonidis [44] represent API usages as a set of API
calls, replacing each method by its type signature. The main benefit of indexing
sets of individual code elements is the conceptual simplicity of the approach,
which facilitates instantiating an idea for a particular target language. On the
downside, the order of code elements and other kinds of relationships may
provide useful information for precisely matching a code example against a
query.

9https://stackoverflow.com/

36 2 | Code Search: A Survey of Techniques for Finding Code

https://stackoverflow.com/

Sequences of Code Elements

To preserve ordering information of code elements during the indexing, several
approaches extract sequences of code elements from a given code example.
Most commonly, these sequences are extracted in an Abstract Syntax Tree (AST)
based, static analysis that focuses on particular kinds of nodes. For example,
Gu, Zhang, and Kim [82] represent API usages by extracting sequences of API
calls from an AST. Another example is FaCoY [124], which represents a code
example as a sequence of tokens extracted from an AST, where each token comes
with a token type, e.g., method call or string literal. To represent incomplete
code examples, they insert empty statements to complete the snippet. David
and Yahav [40] instead use control flow graphs to represent information for the
binary source code. Sun et al. [246] represents code as a sequence of low-level
instructions, which the approach obtains by compiling and then disassembling
the code. Finally, deep learning-based code search approaches often tokenize
source code using a sub-word tokenizer, such as the WordPiece [271] tokenizer
used, e.g., by Salza et al. [227].

Relations between Code Elements

Going beyond individual code elements and sequences thereof, many approaches
extract a richer set of relations between code elements. The most common
approach is to focus on entities, typically code elements, such as classes, methods,
and statements, and relations between them, such as one class inheriting from
another class, one method calling another method, and a method containing
a statement [15]. Popular examples of this approach include CodeQuest [86]
and Sourcerer [146], which extract code elements and their relations through
an AST-based analysis. Sourcerer also serves as the basis for other code search
approaches, e.g., by Bajracharya, Ossher, and Lopes [12] and Lv et al. [156].
Sirres et al. [236] extract structural code entities of Java source files, collecting

the relationship of imports, classes, methods and variables. A more recent
example is Aroma [154], which parses code into a simplified parse tree and then
extracts different kinds of features based on the tokens in the code, parent-child
relationships, sibling relationships, and variable usages, focusing. In a similar
vein, Ling et al. [145] represent code as a graph that includes structural parent-

2.4 | Indexing or Training, Followed by Retrieval of Code 37

child relationships, next-token relationships, and definition-use information.
Li et al. [143] extract from ASTs three kinds of relationships between code
elements: sequencing methods calls, callback between methods and methods as
conditions of if statements. Holmes and Murphy [99] use heuristics to collect
relationships of methods inheritance, methods calls and methods usage. Finally,
Paul et al. [195, 196] use non-deterministic finite automata, called code pattern
automata, to represent relationships between code elements.
Instead of a relatively lightweight static extraction of information to index,

some search engines rely on more sophisticated static analysis. For example,
Mishne, Shoham, and Yahav [172] propose a static type state analysis that ex-
tracts temporal specifications in the form of deterministic finite-state automata
that capture sequences of API method calls. Another example is work by Prem-
toon, Koppel, and Solar-Lezama [205], which represent code examples as data
flow graphs.

Summary: To index source code examples, code search engines typically
represent the code as sets of individual code elements, sequences of code
elements, or as relationships between code elements.

2.4.3 Techniques to Compare Queries and Code

After extracting the information from source code, execution behavior, and
natural language information associated with the code, most search engines
index the extracted information to then quickly respond to queries based on the
pre-computed index. The following discusses different approaches for comparing
queries and code, which we group into techniques based on feature vectors
computed without machine learning (Section 2.4.3), machine learning-based
techniques (Section 2.4.3), database-based techniques (Section 2.4.3), graph-
based matching (Section 2.4.3), and solver-based matching (Section 2.4.3).

Indexing and Retrieval Based on Algorithmically Extracted Feature Vectors

Several techniques are based on feature vectors and distances between these
vectors. In this sub-section we discuss approaches that compute feature vectors

38 2 | Code Search: A Survey of Techniques for Finding Code

algorithmically, i.e., without any machine learning model. Their general idea is
to represent both the code examples and the query as feature vectors, and to
then retrieve code examples with a vector similar to that of the query. Because
performing a pairwise comparison of the query vector with each code vector is
inefficient, the approaches compute an index into the feature space that allows
them to efficiently retrieve a ranked list of vectors similar to a given vector.
There are different ways of mapping information about code examples and

queries into feature vectors. One approach is boolean vectors [226] that express
whether some feature, e.g., a particular type of AST node, are present [154].
Another common approach is to map a set of tokens or words into a term
frequency-inverse document frequency (TF-IDF) vector, which expresses not
only whether a feature is present, but also how important its presence is in
comparison with other features [44, 237, 249, 268].
A popular implementation of feature-based indexing and retrieval is the Lucene

library.10 Originally designed for text search, Lucene is used in various code
search engines [12, 14, 122, 124, 161, 201, 236]. It combines the boolean model,
which removes candidate vectors that do not provide the required features, and
the vector space model, which computes a distance between the remaining
candidate vectors and the query vector. The feature vectors are based on a
custom term-frequency formula.11 Moreover, Nguyen et al. [182] use a revised
Revised Vector Space Model (rVSM). The rVSM splits each token in separate
words and computes the weight for each word using TF-IDF.
Instead of building upon an existing indexing and retrieval component, some

search engines implement their own indexing and retrieval technique. For
example, Lee et al. [138] use R*trees [18], which recursively partition the code
examples into a tree structure that can then be used to efficiently find the nearest
neighbors of a query. Luan et al. [154] identify those code examples that have
the most overlap with the query vector by representing the feature set as a sparse
vector and by then computing the overlap between queries and code examples
via matrix multiplication. Another approach [15] matches a code query against
code examples based on feature vectors for different AST subtrees of the code
examples, pruning the large number of combinations to compare by considering

10https://lucene.apache.org/
11https://lucene.apache.org/core/3_5_0/scoring.html

2.4 | Indexing or Training, Followed by Retrieval of Code 39

https://lucene.apache.org/
https://lucene.apache.org/core/3_5_0/scoring.html

only subtrees with the same parent node type.

Learning-based Retrieval

Neural software analysis [202] is becoming increasingly popular, and neural
information retrieval [173] offers an attractive alternative to more traditional
techniques. Most work takes an end-to-end neural learning approach, where a
model learns to embed both queries and code examples into a joint vector space.
Given this embedding, code search reduces to finding those code examples that
are the nearest neighbors of a given query. We discuss approaches following this
overall pattern in the following, focusing at first on natural language-to-code
search and then on code-to-code search.

Learning-based natural language-to-code search. Gu, Zhang, and Kim [82]
pioneered with the first neural, end-to-end, natural language-to-code search
engine. Their model embeds the code of methods using three submodels that
apply recurrent neural networks to the name of the method, the API sequences
in the method, and all tokens in the method body, respectively. Likewise, the
model embeds the words in the query using another recurrent neural network.
All embedding models are trained jointly to reduce the distance of matching
code-query pairs while keeping unrelated pairs apart. In a similar way, Sun et al.
[246] embed a code example and a natural language description into a joint
vector space. They improve upon earlier work by translating the code into a
natural language-like representation based on transformation rules. Chen and
Zhou [34] use two jointly trained auto encoders to map code and text into a
vector space, respectively. Cambronero et al. [28] compare different ways to
implement neural code search, including unsupervised [222] and supervised
approaches and different neural models [82, 102]. Because a single model may
not capture all aspects of a code example, Du et al. [48] propose an ensemble
model that combines three neural code encoders, which focus on the structure
of code, its variables, and its API usages, respectively.
To foster further comparisons, the CodeSearchNet challenge [101] offers a

dataset of 2 million pairs of code and natural language queries, along with

40 2 | Code Search: A Survey of Techniques for Finding Code

several neural baseline models and ElasticSearch.12 Improvements on learning
vector representations of code further improve the effectiveness of learning-based
code search. For example, learn from multiple code representations [80], apply
attention-based neural networks [276], or learn from a graph representation of
code and queries via a graph neural network [145].

Learning-based code-to-code search. To find code based on an incomplete
code example, several learning-based approaches have been proposed. One
approach expands an incomplete code snippet using an LSTM-based language
model and then searches for similar code snippets via a scalable clone de-
tection technique [286]. An improved version of the approach [287] uses a
library-sensitive language model for expanding the given code snippet. Another
approach for retrieving code given an incomplete code snippet learns a model
that predicts the probability that a complete code example fits the given snip-
pet [175]. The model is based on various kinds of contextual information, e.g.,
the types, API calls, and code comments found around the given code snippet.

Search based on pre-trainedmodels. Recent approaches use large pre-trained
language models [59, 83], such as BERT [118], for code search. For example,
Salza et al. [227] pre-train a BERT model on multiple programming languages
and then they fine-tune the model using two encoders: one for natural language
queries and another for code snippets. Chai et al. [29] show the value of
transfer learning for code search by pre-training CodeBERT [59] on Java and
Python, applying a meta-learning approach called MAML (Model-Agnostic Meta-
Learning) [60] to adapt the neural model to the target language, and finally
fine-tuning the model with a dataset from the target language. Instead of an
end-to-end neural search that maps entire code examples and queries into a joint
vector space, one can also use pre-trained embeddings of individual words and
tokens. For example, Ling et al. [145] use GloVe [198] and Zhou, Zhong, and
Shen [286] use pre-trained FastText embeddings.13 Sachdev et al. [222] propose
an approach that maps individual code tokens into vectors, then computes a

12https://www.elastic.co/elasticsearch/
13https://fasttext.cc

2.4 | Indexing or Training, Followed by Retrieval of Code 41

https://www.elastic.co/elasticsearch/
https://fasttext.cc

TFIDF-weighted average of them, and finally uses the resulting vector for a
nearest neighbor-based search in the vector space.

Database-based Indexing and Retrieval

Given the success of databases for storing and retrieving information, several
code search approaches build upon general-purpose databases. David et al. [40]
describe a code search engine for binaries that stores short execution traces
(“tracelets”) in the NoSQL database MongoDB. Given a function as a query, the
approach then retrieves other functions by querying the database for matching
tracelets. Another database-based approach is by Hajiyev, Verbaere, and de Moor
[86], who build upon a relational database. Their approach stores facts extracted
from a program, such as return relationships, method calls, and read and write
fields, and then formulates search queries as database queries. In contrast to the
similarity-based retrieval techniques discussed above, databases retrieve code
examples that precisely match a query.

Graph-based Indexing and Retrieval

Given a graph representation of queries and code, another common approach is
to retrieve code via graph-based matching. Li et al. [143] abstract both code
snippets and a natural language query into graphs that represent different API
method calls and their relationships. Then, they address the retrieval problem
as a search for similar graphs. The Yogo search engine [205] represents a given
query code example and all code examples to search through as dataflow graphs.
To match queries with code examples, the approach then applies a set of rewrite
rules to check if the rewritten graphs match.
Instead of matching graphs, another direction is to use a graph representation

of code to compute a similarity score. Mcmillan et al. [165]’s Portfolio technique
first computes the pairwise similarity of a query and a set of functions, and then
propagates the similarity score using the spreading activation algorithm through
a pre-computed call graph. In an orthogonal step, the approach also computes
the importance of every function by applying the page rank algorithm to the
call graph. Finally, the two scores are combined to retrieve relevant functions.

42 2 | Code Search: A Survey of Techniques for Finding Code

SCRUPLE [195, 196] uses a finite automata-based comparison of a code query
and code examples. After turning both into a finite automata, a code pattern
automaton interpreter compares two pieces of code and reports a match if the
automaton reaches the final state.

Solver-based Matching

Code search engines that represent the behavior of code in the form of constraints
often use Satisfiability Modulo Theories (SMT) solvers to match queries against
code examples [109, 244]. The indexing phase in this case consists of a static
analysis that extracts constraints describing input-output relationships. Then,
the retrieval phase checks with an SMT solver whether the constraints of a code
example satisfy the input-output examples that a user provides as the query. The
idea was first proposed by Stolee, Elbaum, and Dwyer [244] and later refined
and generalized by Jiang et al. [109].

Summary: The most used approaches for indexing and retrieval are feature
vector-based retrieval and, more recently, deep learning-based models. The
first approach needs less data and represents query and source code both
as interpretable feature vectors. The second approach needs more data for
training a model, e.g., to embed both queries and code source into a joint
vector space.

2.4.4 Granularity of Retrieved Source Code

Different code search engines retrieve code at different levels of granularity. We
categorize the existing approaches into four kinds of granularity. First, many
search engines retrieve code snippets, which may range from a single line of
code to multiple consecutive lines that implements a specific task. Second, other
search engines focus on the method-level, i.e., these approaches retrieve entire
methods. Third, users can also search at the class-level, where code search
engines return entire classes. Finally, there also are search engines that operate
at the application or library-level, which we do not cover in full detail here.
Table 2.3 summarizes the approaches and the granularity they use. The same

2.4 | Indexing or Training, Followed by Retrieval of Code 43

Table 2.3: Granularity of source code extracted by code search approaches.
Granularity Approaches

Snippet of code [12, 15, 29, 30, 31, 34, 40, 44, 62, 82, 99, 124, 143, 146,
151, 154, 172, 175, 184, 189, 195, 196, 205, 222, 227, 236,
242, 246, 256, 266, 282, 286]

Method [101, 109, 140, 146, 152, 156, 165, 177, 182, 189, 200, 201,
215, 238, 244, 268]

Class [146, 189, 215]

Application or library [2, 11, 146, 189]

approach may appear in multiple rows [146, 189] if it supports multiple kinds
of granularity.
The design decision of the granularity level to target is very important for a

code search engine, because it affects what a user can search for. For example,
snippets of code-level can be useful to search for code that provides an example
of how to use an API [12]. The disadvantage of retrieving code snippets is
that they may be incomplete and thus hard to directly reuse. Searching at the
method-level can be useful for finding full methods that already solve a specific
task [201], which a user may directly reuse. Finally, class-level and application
or library-level approaches are useful to find entire components to reuse. Due
to the more coarse-grained granularity, the number of suitable results may be
limited though.

44 2 | Code Search: A Survey of Techniques for Finding Code

2.5 Ranking and Pruning of Search Results

After retrieving code examples that likely match a query, many code search
engines rank and prune the results before showing them to the user. This
step is critical to enable users to quickly see the most relevant matches. In the
following, we discuss and compare different ranking (Section 2.5.1) and pruning
(Section 2.5.2) approaches.

2.5.1 Ranking of Search Results

Standard Distance Measures

The by far most common ranking approach is to rely on a distance measure
implicitly provided by the retrieval component of a code search engine (Sec-
tion 2.4). In this approach, the query and each code example are first represented
as feature vectors, then a standard distance measure gives the distance between
a query vector and a code vector, and finally code examples with a smaller
distance to the query are ranked higher. For example, this ranking approach can
be implemented using cosine similarity [28, 31, 34, 145, 222, 227, 246, 249],
Hamming distance [12], and Euclidean distance [15, 137, 138].

Custom Ranking Techniques

In addition or as an alternative to standard distance measures, several search
engines rely on custom ranking techniques. David and Yahav [40] propose a
variation of string edit distance to compute the similarity between two sequences
of assembly instructions. The basic idea is to treat each instruction as a letter and
to use a table that provides a heuristic distance between assembly instructions.
Another approach [143] ranks code examples using two scores that are based
on the number of tokens that match the given natural language description and
the length of a code snippet, respectively. Sachdev et al. [222] augment the
rank obtained via cosine similarity with custom rules, such as the number of
query tokens present in the candidate, to re-rank the list of results. Another
example is from Lu et al. [152]. They compute a representative set of words for
each method and then rank results via a normalized intersection of these words.

2.5 | Ranking and Pruning of Search Results 45

COSAL [163] combines multiple custom ranking techniques, which compare
two pieces of code based on their token similarity, structural similarity, and
behavioral similarity, respectively.
Some ranking approaches look beyond the given query by also considering the

code a developer is editing while making a query. For example, when building a
query vector, Takuya and Masuhara [249] give more weight to occurrences of
tokens near the cursor position, to find programs that contain similar fragments
to the code around the cursor position. In a similar vein, Wightman et al. [266]
uses features of the programmer’s source code to rank and filter prospective
snippet results, including variable types and names, the cursor position within
the abstract syntax tree, and code dependencies. A higher rank here means that
a code example uses more of the existing variables etc., and hence will require
fewer modifications.
Some more recent ranking approaches are based on machine learning models.

For example, the Lancer approach [287] fine-tunes a pre-trained BERT model14

to predict whether a code example matches the given, incomplete method, and
then ranks code examples based on the predicted score. Ye et al. [282] compute
the similarity score using two parameters retrieved with a code summarization
model and a code generation model, based on a dual learning technique.

Summary: To rank search results, engines often use standard algorithms,
such as cosine similarity and Euclidean distance, or they implement custom
variations of these techniques.

2.5.2 Pruning of Search Results

Orthogonal to ranking, several search engines also prune search results that are
unlikely to be of interest to the user. The most straightforward pruning technique
is to discard results based on similarity threshold. For example, some approaches
discard all candidates with a similarity lower than some threshold [30, 109],
while others show only the top N results in the output [124, 151, 209]. Another
way of pruning search results is to merge similar code examples, assuming that

14https://github.com/huggingface/pytorch-pretrained-BERT

46 2 | Code Search: A Survey of Techniques for Finding Code

a user likely wants to see only one of them. For example, Mishne, Shoham, and
Yahav [172] merge similar method call paths relevant to the query to remove
redundancy in the final results. Aroma [154] uses a greedy algorithm based on
parse tree comparison to find and remove redundant code snippets, followed by
re-ranking the pruned search results.

Summary: Filtering by a threshold and merging similar results are the
most popular techniques for pruning code search results.

2.6 Empirical Studies of Code Search

The wide adoption of code search in practice raises various interesting questions
about the way developers search for code. This section discusses empirical stud-
ies related to how, when, and why developers search for code and what tools
they use for this purpose. We include all such empirical studies that we are aware
of and that fit the selection criteria given in Section 2.1. We start by describing

Table 2.4: Overview of empirical studies on code search.

Si
ng
er

et
al
.

[2
35
]

Si
m
,C
la
rk
e,
an
d

H
ol
t[
23
2]

Ko
et
al
.[
12
6]

Si
m
et
al
.[
23
3]

Pa
nc
he
nk
o,

Pl
at
tn
er
,a
nd
Ze
ie
r

[1
92
]

Ba
jra
ch
ar
ya
an
d

Lo
pe
s[
13
]

Sa
do
w
sk
i,
St
ol
ee
,

an
d
El
ba
um
[2
23
]

Ra
hm
an
et
al
.

[2
10
]

Topic of study:
Usage of development tools ✓ ✓
Usage of search tools ✓ ✓ ✓ ✓ ✓ ✓
Activities of developers ✓ ✓ ✓ ✓

Methodology:
Questionnaire ✓ ✓ ✓ ✓
Log analysis ✓ ✓ ✓ ✓ ✓ ✓
Observing developers ✓ ✓

Searched code:
Single project ✓ ✓ ✓
Multiple projects within organization ✓ ✓ ✓
Many open-source projects ✓ ✓ ✓

2.6 | Empirical Studies of Code Search 47

the experimental setups used in these studies (Section 2.6.1) and then present
some of their main results (Section 2.6.2). Table 2.4 gives an overview of the
discussed studies, including the topics they address, the methodologies they use,
and the amount of code searched through by the studied developers.

2.6.1 Setups of Empirical Studies

While practically all empirical studies address the broad questions of how, when,
and why developers search for code, they use different setups and methodologies
to address this question. Early studies [126, 235] are mostly about what activities
developers spend their time on and what tools they use, including tools used
for code search. In contrast, more recent studies [13, 192, 210, 223, 232, 233]
focus specifically on code search tools and what activities they are used for.
We see three kinds of methodologies, and sometimes combinations of them:

questionnaires answered by developers [126, 232, 235], analyses of logs of
search engines [13, 192, 210, 223, 233, 235], and observing developers, e.g.,
by shadowing them [235] or by recording their screens [126]. The first two
kinds of studies are typically based on data gathered from tens [126, 232, 233]
to hundreds [223] of developers. In contrast, log analysis often covers much
larger datasets, ranging between tens of thousands [192] and ten million [13]
logged activities.
The studies also vary by the amount of code that is searched through by the

studied developers. Reflecting the general trends in code search engines, early
studies are about searching through a single project [126, 232, 235], whereas
later studies are about searching through multiple projects, either within a larger
organization [192, 223] or the open-source ecosystem [13, 210, 233].

2.6.2 Results of Studies and their Implications

A recurring finding in studies is that code search is among the most common
activities developers spend their time on. Early studies report that grep, find, and
its variants are used on a regular basis [232, 235]. For example, measurements
of tool invocations by Singer et al. [235] shows that grep and its variants are

48 2 | Code Search: A Survey of Techniques for Finding Code

the second-most frequently used developer tools, right after the compiler. The
observational study by Ko et al. [126] also reports code search to be a common
activity. However, their definition of “searching for code” only partially matches
ours, because we assume that there is an explicitly formulated query, whereas
they also mean reading code to find a specific code location. A study at Google
based on a specialized code search engine shows that the average developer is
involved in five search sessions per day, with a total of twelve daily queries [223].
Overall, these findings highlight the importance of code search in software
development, motivating researchers and practitioners to work on code search
techniques.
Several studies investigate the goals that developers have when searching for

code. The three most commonly reported goals are finding example code to
reuse, e.g., when trying to understanding how to use an API (between 15% [232]
and 34% [223] of all searches), program understanding (between 14% [232]
and 29% [223] of all searches), and understanding and fixing a bug (between
10% [223] and 20% [232] of all searches). Beyond these three goals, a long
tail of other goals is reported, such as understanding the impact of a planned
code change, finding locations relevant for a code clean-up, understanding the
coding style used within an organization, and identifying the person responsible
for a particular piece of code. A perhaps surprising finding is that developers
also often use code search as a quick way to navigate through code they are
already familiar with [223].
Being a central element of every search, queries and their properties have

received some attention in studies. A study of the Koders code search engine
finds most queries to be short, with 79% of users providing only a single search
term [13]. In contrast, other studies report longer queries, e.g., an average of
4.2 terms per query in a study across five search engines [233], and of 4.7 terms
for code-related queries given to Google’s general-purpose search engine [210].
Beyond the size of queries, several studies investigate what terms are used in
queries. Bajracharya and Lopes [13] find that both code queries and natural
language queries are common. Comparing code-related queries with general-
purpose web search queries, Rahman et al. [210] find that code queries use a
smaller vocabulary. Another interesting finding related to queries is that they
are frequently reformulated within a search session [13, 223, 233], even more

2.6 | Empirical Studies of Code Search 49

often than general web search queries [210].
Finally, some studies analyze and compare how effective code search engines

are at providing useful search results. One study reports that between 25%
and 60% of all queries are effective, depending on the kind of query, where
“effective” means that the search results cause the user to download a relevant
piece of code [13]. Another study compares specialized code search engines
with general-purpose web search engines. It finds that the former are more
effective when searching for entire subsystems, e.g., a library to use, whereas the
latter are more effective for finding individual blocks of code [233]. The same
study also reports that it is easier to find reference examples than components
that are reusable as-is.

Summary: Empirical studies of developers show that they commonly
perform code search to reach various goals, including code understanding,
finding code to reuse, and quickly navigating to code the developer already
knows.

2.7 Open Challenges and Research Directions

2.7.1 Support for Additional Usage Scenarios

Each code search engine focuses on one or more usage scenarios, such as finding
examples of how to use a specific API or finding again some code that a developer
has previously worked on. In addition to the currently supported usage scenarios,
we envision future work to support other search-related developer tasks. For
example, developers may want to search not only through a static snapshot of
code, but also search for specific kinds of changes in the version histories of
projects. Searching for changes could help developers, e.g., to understand how a
particular API usage typically evolves, to find examples of code changes similar
to a change a developer is currently working on, or to find code changes that have
introduced bugs. Lawall, Lambert, and Muller [129] and Di Grazia, Bredl, and
Pradel [41] propose promising first steps into this direction. Another example
of a currently unsupported usage scenario is cross-language search. In this
scenario, a user formulates a code query in one programming language to find

50 2 | Code Search: A Survey of Techniques for Finding Code

related code written in another programming language. Such cross-language
search could help developers transfer their knowledge across languages, e.g.,
when a developer knows how to implement a particular functionality in one but
not in another language.

2.7.2 Cross-Fertilization with Code Completion and Clone Detection

Code search relates to other problems that have received significant attention by
researchers and that offer opportunities for cross-fertilization. One such problem
is code completion, i.e., the problem of suggesting suitable code snippets while
the developer is writing code in an integrated development environment (IDE).
Recent large-scale languagemodels used for code completion offer a functionality
similar to code search. For example, a typical usage scenario of GitHub’s Copilot
tool15 and the underlying Codex model [33] takes a short natural language
description of a desired functionality and maps it to a code snippet offering
that functionality. This usage scenario is closely related to code search engines
that receive free-form queries (Section 2.2.1). It remains an open challenge to
apply successful techniques from code search in code completion, and vice versa.
Another problem that is strongly related to code search is clone detection [221].
Similar to code search engines that accept programming language queries
(Section 2.2.2), clone detectors try to find code that is similar to a given code
example. A key difference is that clone detection tries to find multiple code
examples that implement the same functionality (possibly with syntactic and
semantic differences that do not affect the overall behavior), whereas code
search tries to retrieve code that offers more functionality than the given query.
Despite these different goals, there is potential for cross-fertilization of the two
related fields, e.g., by adapting effective representations of code (Section 2.4)
or mechanisms for pruning search results (Section 2.5.2).

2.7.3 Learning-Based Code Search

Given the tremendous progress in machine learning, adopting the newest models
to code search is likely to offer new opportunities to code search. In particular,

15https://github.com/features/copilot

2.7 | Open Challenges and Research Directions 51

https://github.com/features/copilot

we identify three open challenges. First, future work could benefit from the
increasingly effective code representationmodels proposed in the neural software
analysis field [202] to compute a vector representation of code and of queries,
which can then be used to identify code examples similar to a given query.
Some instances of this idea have already been presented [82], but as code
representation models keep increasing, adopting new models is likely to also
improve code search. Second, future work could design models that not only
retrieve code, but also generalizing examples seen during training into new code
that fits a query. Open challenges here include to formulate code search as a
zero-shot learning problem [24] and to adapt models that combine question
answering with retrieval [136].

2.7.4 Deployment and Adoption in Practice

Code search is an area of strong interest by academic researchers, tool builders
in industry, and practitioners. Despite the already impressive use of code search
by developers, we see several open challenges related to its deployment and
adoption in practice. On the one hand, there are challenges faced by people who
are running and maintaining a code search engine. For example, the problem
of how to incrementally re-index a code corpus when the code is evolving has
not yet received significant attention by researchers. A naive approach is to
continuously re-index the entire corpus, which is likely to unnecessarily repeat
significant computational effort.
On the other hand, there are challenges faced by users of code search engines.

While various techniques have been proposed for the core components of code
search, its user interface is receiving less attention, with some noteworthy excep-
tions, such as some of the query expansion techniques discussed in Section 2.3.
An interesting line of future work could be to automatically formulate clarifica-
tion questions, e.g., in natural language, which could allow a user to prune the
search space with a single click. Another promising direction is to support users
in defining code queries (Section 2.2) by adding automatic code completion
features known from IDEs into the interface of a search engine. Finally, future
work could design “query-less” search engines that suggest suitable code snippets
while a developer is writing code, without the need to explicitly formulate a

52 2 | Code Search: A Survey of Techniques for Finding Code

query. First steps toward that goal have been taken, e.g., by Brandt et al. [22]
and Takuya and Masuhara [249].

2.7.5 Common Datasets and Benchmarks

An effective way to foster further progress in the research field is to offer reusable
datasets for evaluating and comparing code search engines. Ideally, such a
dataset should be realistic, large-scale, and cover multiple programming lan-
guages. Several benchmark datasets have been proposed and are use by parts
of the existing work. One kind of benchmarks consists of groups of semantically
equivalent implementations, e.g. BigCloneBench [248], Google Code Jam16, and
AtCoder17. Such benchmarks are particularly useful to evaluate code-to-code
search engines (Section 2.2.2), as one implementation in a group can be used
as a query, while the other implementations are expected to show up among the
results. Benchmarks that come with executable test cases, e.g., those derived
from coding competitions, are also useful to evaluate approaches based on
dynamic analysis (Section 2.4.1).
Another kind of benchmarks offers pairs of natural language queries and code.

For example, the CodeSearchNet challenge offers such a dataset, which has been
automatically gathered and covers Go, Java, JavaScript, PHP, Python, and Ruby
code [101]. In a similar vein, CodeXGLUE offers query-code pairs for Python and
Java [153]. The Search4Code dataset provides code-related queries extracted
from Bing search queries via a weakly supervised discriminative model [212].
Instead of relying on automated extraction of datasets, CoSQA is a benchmark
of pairs of natural language queries and code examples that have been manually
annotated [100].
We anticipate future work to build even more than today upon these datasets,

either as a benchmark to evaluate a novel code search engine, or as a training
dataset to learn from. There also are opportunities for creating datasets and
benchmarks that go beyond those available today. For example, the community
would benefit from a dataset that not only includes queries and search results,
but also information on how developers act on search results, e.g., by selecting

16https://codingcompetitions.withgoogle.com/codejam
17https://atcoder.jp/

2.7 | Open Challenges and Research Directions 53

https://codingcompetitions.withgoogle.com/codejam
https://atcoder.jp/

lower-ranked results or by copying and adapting code examples. An interesting
challenge for benchmarks used to evaluate learning-based code search is how to
ensure that a model does not see the benchmark during learning. As large-scale,
pre-trained models [33, 59, 83], which often are trained on a large fraction
of all publicly available source code, are becoming increasingly popular, the
chances that a publicly available benchmark is coincidentally used during training
increases.

2.8 Concluding Remarks

This chapter provides a comprehensive overview of 30 years of research on
code search. Given the huge amounts of existing code, searching for specific
code examples is a common activity during software development. To support
developers during this activity, various techniques for finding relevant code have
been proposed, with an increase of interest during recent years. We discuss what
kinds of queries code search engines support, and give an overview of the main
components used to retrieve suitable code examples. In particular, the chapter
discusses techniques to pre-process and expand queries, approaches toward
indexing and retrieving code, and ways of pruning and ranking search results.
Our chapter enables readers to obtain an overview of the field, or to fill in gaps
of their knowledge of the state-of-the-art. Based on our survey of past work, we
conclude that code search has evolved into a mature research field, with solid
results that have already made an impact on real-world software development.
Despite all advances, many open challenges remain to be addressed in the future,
and we hope this chapter will provide a useful starting point for addressing
them.

54 2 | Code Search: A Survey of Techniques for Finding Code

Ch
ap
te
r 3

DiffSearch: A Scalable and Precise
Search Engine for Code Changes

The source code of successful projects is evolving all the time, resulting in
hundreds of thousands of code changes stored in source code repositories. This
wealth of data can be useful, e.g., to find changes similar to a planned code
change or examples of recurring code improvements. This chapter presents
DiffSearch, a search engine that, given a query that describes a code change,
returns a set of changes that match the query. The approach is enabled by three
key contributions. First, we present a query language that extends the underlying
programming language with wildcards and placeholders, providing an intuitive
way of formulating queries that is easy to adapt to different programming
languages. Second, to ensure scalability, the approach indexes code changes
in a one-time preprocessing step, mapping them into a feature space, and then
performs an efficient search in the feature space for each query. Third, to
guarantee precision, i.e., that any returned code change indeed matches the
given query, we present a tree-based matching algorithm that checks whether a
query can be expanded to a concrete code change. We present implementations
for Java, JavaScript, and Python, and show that the approach responds within

55

seconds to queries across one million code changes, has a recall of 80.7% for Java,
89.6% for Python, and 90.4% for JavaScript, enables users to find relevant code
changes more effectively than a regular expression-based search and GitHub’s
search feature, and is helpful for gathering a large-scale dataset of real-world
bug fixes.

3.1 Introduction

Hundreds of thousands of code changes are stored in the version histories of code
repositories. To benefit from this immense source of knowledge, practitioners
and researchers often want to search for specific kinds of code changes. For
example, developers may want to search through their own repositories to find
again a code change performed in the past, or search for commits that introduce
a specific kind of problem. Developers may also want to search through changes
in repositories by others, e.g., to understand how code gets migrated from one
API to another, or to retrieve examples of common refactorings for educational
purposes. A question on Stack Overflow on how to systematically search through
code changes18 has received over half a million views, showing that practitioners
are interested in finding changes from the past.
Besides practitioners, researchers also commonly search for specific kinds of

code changes. For example, a researcher evaluating a bug finding tool [85] or a
program repair tool [134, 174, 250] may be interested in examples of specific
kinds of bug fixes. Likewise, researchers working on machine learning models
that predict when and where to apply specific code changes require examples
of such changes as training data [10]. Finally, researchers systematically study
when and how developers perform specific kinds of changes to increase our
understanding of development practices [52, 176, 179, 211].
Unfortunately, there currently is no efficient and effective technique for sys-

tematically searching large version histories for specific kinds of changes. The
solutions proposed in the above Stack Overflow post are all based on matching
regular expressions against raw diffs. However, searching for anything beyond
the most simple change patterns with a regular expression is cumbersome and

18https://stackoverflow.com/questions/2928584/
how-to-grep-search-committed-code-in-the-git-history

56 3 | DiffSearch: A Scalable and Precise Search Engine for Code Changes

https://stackoverflow.com/questions/2928584/how-to-grep-search-committed-code-in-the-git-history
https://stackoverflow.com/questions/2928584/how-to-grep-search-committed-code-in-the-git-history

likely to result in irrelevant code changes. Another existing technique is GitHub
Search,19 which allows for searching through commits using free-form queries
that are matched, e.g., against commit messages. However, both regular expres-
sions and GitHub Search have significant drawbacks when searching for specific
code changes, as we show in a user study. Finally, previous research proposes
techniques that linearly scan version histories for specific patterns [61, 116, 131,
191]. However, due to their linear design, these techniques do not scale well to
searching through hundreds of thousands of changes in a short time.
This chapter presents DiffSearch, a scalable and precise search engine for code

changes. DiffSearch is enabled by three key contributions. First, we design a
query language that is intuitive to use and easy to adapt to different programming
languages. The query language extends the target programming language
with wildcards and placeholders that abstract specific syntactic categories, e.g.,
expressions. Second, to ensure scalability, the approach is split into an indexing
part, which maps code changes into a feature space, and a retrieval part, which
matches a given query in the feature space. We design specific features for code
changes, extracting useful information to match different changes on source
code. Finally, to ensure precision, i.e., that a found code change indeed fits the
given query, a crucial part of the approach is to match candidate code changes
against the given query. We present an efficient algorithm that checks if a query
can be expanded into a code change.
Our approach supports the different usage scenarios we envision DiffSearch to

be useful for. First, the approach supports users interested in finding one specific
code change, e.g., when searching through the history of their own project to
find some change done by a colleague. In this scenario, similar to a classical
web search engine, the user will consider only the first few search results and
stop inspecting them as soon as the expected code change is found. Second,
DiffSearch supports users interested in findingmultiple code changes, e.g., when
searching through a set of popular open-source projects to find examples of
typical ways to refactor a specific API usage. In this scenario, the user will
inspect the ranked list of search results until having seen a sufficient number
of examples. Third, the approach supports users interested in finding many

19https://github.com/search

3.1 | Introduction 57

https://github.com/search

code changes, e.g., to build a large-scale dataset to train a neural model. In this
scenario, the user can formulate and fine-tune the query through the interactive
user interface of DiffSearch, and then download all matching results at once into
a file. Finally, DiffSearch can also be configured to retrieve all code changes that
match a query, e.g., to quantify how often specific changes occur in practice. In
this scenario, the user turns off the indexing and retrieval part of the approach,
and instead runs the precise matching of a query against all code changes.20

DiffSearch is designed in a mostly language-agnostic way, making it possible
to apply the approach to different languages. In particular, we restrict ourselves
to a very lightweight static analysis of code changes. The query language and
parts of the search algorithm build upon the context-free grammar of the target
programming language. As a proof-of-concept, DiffSearch currently supports
three widely used languages: Java, JavaScript, and Python.
Our approach relates to work on searching for code, which retrieves code

snippets that match keywords [11, 82], test cases [215], or partial code snip-
pets [124, 154]. While code search engines often have a design similar to ours,
i.e., based on indexing and retrieval, they consider only a single snapshot of
code, but not code changes. Other related work synthesizes an edit program
from one or more code changes [56, 58, 61, 64, 219] and infers recurring code
change patterns [179, 190]. Starting from concrete changes, these approaches
yield abstractions of them. Our work addresses the inverse problem: given a
query that describes a set of code changes, find concrete examples that match
the query. Finally, our work relates to clone detection [107, 114, 144, 220, 224],
as DiffSearch searches for code changes that resemble a query. Our work differs
from clone detection by considering code changes (and not individual snippets
of code), by focusing on guaranteed matches instead of similar code, and by
responding to queries quickly enough for interactive use.
We evaluate the effectiveness and scalability of DiffSearch with one million

code changes in each of Java, Python, and JavaScript. We find that the approach
responds to queries within a few seconds, scaling well to large sets of code
changes. The search has a mean recall of 80.7% for Java, 89.6% for Python, and
90.4% for JavaScript, which can be increased even further in exchange for a

20As shown in the evaluation, guaranteeing to find all matching code changes comes at the cost of
efficiency, as it requires a linear search through all code changes in the corpus.

58 3 | DiffSearch: A Scalable and Precise Search Engine for Code Changes

slight increase in response time. A user study shows that DiffSearch enables users
to effectively retrieve code changes, clearly outperforming a regular expression-
based search through raw diffs and GitHub Search. As a case study to show
the usefulness of DiffSearch for researchers, we apply the approach to gather a
dataset of 74,903 bug fixes.
In summary, this chapter contributes the following:

• A query language that extends the target programming language with
placeholders and wildcards, making it easy to adapt the approach to
different languages.

• A technique for searching for code changes that ensures scalability through
approximate, indexing-based retrieval, and that ensures precision via exact
matching.

• Empirical evidence that the approach effectively finds thousands of relevant
code changes, scales well to more than a million changes from different
projects, and successfully helps users answer a diverse set of queries.

The implementation and a web interface of DiffSearch are publicly available:

http://diffsearch.software-lab.org

3.2 Example and Overview

3.2.1 Motivating Example

To illustrate the problem and how DiffSearch addresses it, consider the following
example query. The query searches for code changes that swap the arguments
passed to a call that is immediately used in a conditional. Such a query could be
used to find fixes of swapped argument bugs [217].

if(ID<1>(EXPR<1>, EXPR<2>)){
<...>

→ if(ID<1>(EXPR<2>, EXPR<1>)){
<...>

Our query language is an extension of the target programming language, Java
in the example, and adds placeholders for some syntactic categories. For example,

3.2 | Example and Overview 59

http://diffsearch.software-lab.org

the ID<1> placeholder matches any identifier, and the EXPR<1> placeholder
matches any expression. Instead of such placeholders, queries can also include
concrete identifiers and literals, e.g., to search for specific API changes.
As the set of code changes to search through, suppose we have the following

three examples, of which only the second matches the query:

Code change 1:
if(check(a - 1, b)){ → if(check(a - 1, c)){

Code change 2:
if(isValidPoint(x, y)){ → if(isValidPoint(y, x)){

Code change 3:
while(var > k - 1){

sum += count(var);
→ while(var > k){

sum += 2 * count(var);

3.2.2 Problem Statement

An important design decision is the granularity of code changes to consider.
The options range from changes of individual lines, which would limit the
approach to very simple code changes, to entire commits, which may span
multiple files, several dozens of lines [3], often containing multiple entangled
logical changes [16, 94, 116, 193]. We opt for a middle ground between these
two extremes and consider code changes at the level of “hunks”, i.e., consecutive
lines that are added, modified, or removed together.

Definition 3.1 (Code change)
A code change c → c′ consists of two pieces of code, each of which is a sequence
[l1, .., lm] of consecutive lines of code extracted from a file in the target language.

Definition 3.2 (Query)
A query q → q′ consists of two patterns, which each are a sequence [l1, .., lm] of
lines of code in an extension of the target programming language. The language
extension adds wildcards, a special “empty” symbol, and placeholders for specific
syntactic categories, e.g., to match an arbitrary expression or identifier.

Given these two ingredients, the problem we address is:

60 3 | DiffSearch: A Scalable and Precise Search Engine for Code Changes

Parsing &
Feature extraction

Indexing Retrieval
Matching &

Ranking

Feature
vector

Learned
index

Candidate
matches

Query

Guaranteed
matches

Code
changes

Offline
Online

Figure 3.1: Overview of the approach.

Definition 3.3 (Search for code changes)
Given a set C of code changes and a query q → q′, find a set M ⊆ C of code
changes such that each (c→ c′) ∈ M matches q→ q′. We say that a code change
c→ c′ matches a query q→ q′ if there exists an expansion of the placeholders and
wildcards in q→ q′ that leads to c→ c′.

By ensuring that, for any retrieved code change, the query can be expanded
to the code change, DiffSearch guarantees that every result of a search precisely
matches the query.

3.2.3 Main Idea of the Approach

DiffSearch consists of four components that are used in an offline and an online
phase as illustrated in Section 3.1. In the offline phase, the approach analyzes and
indexes a large set of code changes. The Parsing & Feature extraction component
of the approach parses and abstracts concrete code changes and queries into a
set of features, mapping both into a common feature space. For our example
query in Section 3.2.1, the features encode, e.g., that a call expression appearing
within the condition of an if statement is changed and that the changed call has
two arguments. To enable quickly searching through hundreds of thousands of
code changes, the Indexing component of DiffSearch indexes the given feature

3.2 | Example and Overview 61

vectors [111] once before accepting queries.
In the online phase, the input is a query that describes the kind of code

changes to find. Based on the pre-computed index and the feature vector of
a given query, the Retrieval component retrieves those code changes that are
most similar to the query. For our motivating example, this yields Code change 1
and Code change 2 because both change the arguments passed to a call. The
similarity-based retrieval does not guarantee precision, i.e., that each candidate
code change indeed matches the query. The Matching & Ranking component
of DiffSearch removes any candidates that do not match the query by checking
whether the placeholders and wildcards in the query can be expanded into
concrete code in a way that yields the candidate code change. For our example,
matching will eliminate Code change 1, as it does not swap arguments, and
eventually returns Code change 2 as a search result to the user.

3.3 Approach

This section presents the approach in detail. Before going through the four
components introduced in Section 3.2.3, we define the query language to specify
what kind of code changes to search for.

3.3.1 Query Language

To search for specific kinds of code changes, DiffSearch accepts queries that
describe the code before and after the change. Our goal is to provide a query
language that developers can learn with minimal effort and that supports all
constructs of the target programming language. We initially considered three
possible kinds of code search queries, as classified by Di Grazia et al. [42]. First,
natural language queries, which are easy to type but inherently imprecise. Sec-
ond, programming language queries, which require knowing the programming
language and are precise. Third, custom languages that are often the most
precise, but they may impose some effort to learn the new language [42].
Comparing the different options and considering the envisioned users of our

approach, we design the query language of DiffSearch as an extension of the
target programming language. That is, the query language includes all rules of

62 3 | DiffSearch: A Scalable and Precise Search Engine for Code Changes

Query ::= Snippet→ Snippet
Snippet ::= Stmt* | Expression | _
Stmt ::= 〈...〉 | (Target language rules)
Expression ::= EXPR | EXPR〈Number〉 | 〈...〉 | (Target language rules)
AssignOperator ::= OP | OP〈Number〉 | (Target language rules)
BinaryOperator ::= binOP | binOP〈Number〉 | (Target language rules)
UnaryOperator ::= unOP | unOP〈Number〉 | (Target language rules)
Identifier ::= ID | ID〈Number〉 | (Target language rules)
Literal ::= LT | LT〈Number〉 | (Target language rules)

Figure 3.2: Simplified grammar of queries. Non-terminals are in italics.

the target programming language and additional features useful for queries. As
our approach can support different target languages, this means that there is a
different query language for each target language, each extending the target
language with search-related keywords. That is, a user who is already familiar
with the target programming language needs to learn only a handful of new
keywords for using DiffSearch.
Section 3.2 shows the grammar of our query language. A query consists of

two sequences of statements, which describe the old and new code, respectively.
The syntax for statements is inherited from the target programming language
and not shown in the grammar. Instead of a regular code snippet, a query may
contain an underscore to indicate the absence of any code, which is useful to
describe code changes that insert or remove code. The grammar extends the
target language by adding placeholders for specific syntactic entities, namely
expressions, operators, identifiers, and literals. For each such entity, a query
can either describe with an unnamed placeholder that there should be any such
entity, e.g., EXPR for any expression, or repeatedly refer to a specific entity with a
named placeholder, e.g., using EXPR<1> and EXPR<2>. Named placeholders will
be bound to the same entity across the entire query, e.g., to say that the same
expression EXPR<1> must appear on both sides. We also introduce the wildcard
<...> that matches any statement, any expression, or nothing at all.
To illustrate the query language, Table 3.1 gives a few examples of code

changes and a corresponding query that matches the code change. The first two

3.3 | Approach 63

Table 3.1: Examples of Java changes and matching queries.
Code change DiffSearch query

- evt.trig(); ID.ID(); → _

- if (x > 0)
- y = 1;
+ if (x < 0)
+ y = 0;

if (EXPR)
ID OP LT;

→ if (EXPR)
ID OP LT;

- run(k);
- now(k);
+ runNow(k);

run(EXPR<0>);
now(EXPR<0>);

→ runNow(EXPR<0>);

examples use unnamed placeholders, e.g., to match arbitrary identifiers. The
third example uses a named placeholder: The EXPR<0> in both the old and new
part of the query means that this expression, here k, remains the same despite
the code change, which replaces two calls with one.

3.3.2 Tree-based Representation of Code Changes and Queries

One goal of DiffSearch is to be mostly language-agnostic, making it possible to
apply the approach to different programming languages. Our current version
supports Java, JavaScript, and Python. To this end, the approach represents code
changes and queries using a parse tree, i.e., a representation that is straightfor-
ward to obtain for any programming language. The benefit of parse trees is that
they abstract away some details, such as irrelevant whitespace, yet provide an
accurate representation of code changes.
To represent a set of commits in a version history as pairs of trees, DiffSearch

first splits each commit into hunks, which results in a set of code changes
(Definition 3.1). The approach then parses the old and new code of a hunk
using the programming language grammar into a single tree that represents
the code change. Likewise, to represent a query, DiffSearch parses the query
into a parse tree using our extension of the grammar (Figure 3.2). For example,
Figure 3.3 shows the parse trees of a change and a query. The code change (a)
corresponds to Code change 2 from Section 3.2, which swaps x and y of a call to
isValidPoint. Note that code edits that do not cause any change of the parse

64 3 | DiffSearch: A Scalable and Precise Search Engine for Code Changes

Triangle feature Node feature

stmt ->

code change

If stmt

block

{

parExpr

expr()

call

isValidPoint exprList()

expr expr,

stmt

If stmt

block

{

parExpr

expr()

call

isValidPoint exprList()

expr expr,

primary primary primary primary

x xyy

(a) Code change.

stmt ->

query

If stmt

block

{ <...>

parExpr

expr()

call

ID<1> exprList()

EXPR<1> EXPR<2>,

stmt

If stmt

block

{ <...>

parExpr

expr()

call

ID<1> exprList()

EXPR<2> EXPR<1>,

(b) Query.

Figure 3.3: Parse tree representations of Code change 2 (a) and the query from
Section 3.2 (b). Only some of all considered features are highlighted
for illustration.

tree, e.g., because only semantically irrelevant whitespace gets changed, are not
considered as code changes and ignored by DiffSearch.
An interesting challenge in parsing code changes and queries is syntactically

incomplete code snippets. For example, the code changes in Section 3.2 open a
block with { but do not close it with }, because the line with the closing curly
brace was not changed. DiffSearch addresses this challenge by relaxing the

3.3 | Approach 65

grammar of the target language so that it accepts individual code lines even
when they are syntactically incomplete. For example, we relax the grammar to
allow for unmatched parentheses and partial expressions.
As a potential alternative to parse trees, we considered and eventually decided

against abstract syntax trees (ASTs). While ASTs are a suitable representation,
e.g., for compilers, they abstract away too many syntactic details that may be
relevant in DiffSearch. For example, consider the following code change that
adds parentheses to make a complex expression easier to read:

flag = alive || x && y; → flag = alive || (x && y);

Because the added parentheses preserve the semantics of the expression, they
are abstracted away in a typical AST, i.e., the old and new code have the same
AST. As a result, an AST-based representation could neither represent this change
nor a query to search for it.

3.3.3 Extracting Features

Based on the tree representation of code changes and queries, the feature
extraction component of DiffSearch represents each tree as a set of features. The
goal of this step is to enable quickly searching through hundreds of thousands of
code changes. By projecting both code changes and queries into the same feature
space, we enable the approach to compare them efficiently. An alternative would
be to pairwise compare each code change with a given query [61, 131]. However,
such a pairwise comparison would require an amount of computation time that
is linear w.r.t. the number of code changes, which would negatively affect the
efficiency of searching through many code changes.
DiffSearch uses two kinds of features. The first kind of feature is node features,

which encode the presence of a node in the parse tree. For the example in
Section 3.3, the dotted, blue lines show three of the extracted node features.
The second kind of feature is parse tree triangles, which encode the presence
of a specific subtree. Each parse tree triangle is a tree that consists of a node
and all its descendants up to some configurable depth. We use a depth of one
as a default, i.e., a triangle contains a node and its immediate child nodes. For
the example in Section 3.3, the dashed, red lines highlight two of the extracted
triangles. The triangle at the top encodes the fact that there is an if statement,

66 3 | DiffSearch: A Scalable and Precise Search Engine for Code Changes

Algorithmus 3.1 Represent features as fixed-size vector.
Input: Set F of features, target size ltarget

Output: Feature vector v
1: v← vector of ltarget zeros
2: for all f ∈ F do
3: h← hash(f)
4: v[h mod ltarget]← 1
5: end for
6: return v

while the other triangle encodes the fact that the code contains an expression list
with exactly two expressions. The two kinds of features complement each other
because node features encode information about individual nodes, including
identifiers and operators, whereas parse tree triangles represent how nodes are
connected.
For each code change or query, the approach extracts a separate set of features

for the old and the new code. With this separation, the features encode whether
specific code elements are added or removed in a code change. The feature
sets for code changes and queries are constructed in the same way, except that
DiffSearch removes node features for placeholder nodes, e.g., ID or EXPR, from
the query. The rationale is that we want the features of a query to be a subset of
the features of a matching code change, but placeholder nodes never appear in
code changes.
Different code changes and queries yield different numbers of features. To

efficiently compare a given query against arbitrary code changes, DiffSearch
represents all features of a code change or query as a fixed-size feature vector.
The feature vector is a binary vector of length ln + l ′n + ltri + l ′tri = l, where ln and
l ′n are the number of bits to represent the node features of the old and new code,
respectively, and likewise for ltri and l ′tri for the parse tree triangle features. We
use l = 1,000 by default, dividing it equally among the four components, which
strikes a balance between representing a diverse set of features and efficiency
during indexing and retrieval. Section 3.5.5 evaluates different sizes for the
feature vector length.
Algorithm 3.1 summarizes how DiffSearch maps a set F of features into a

3.3 | Approach 67

fixed-size vector v. The algorithm computes a hash function over the string
representations of individual nodes in a feature, sums up the hash values into a
value h, and sets the h-th index of the feature vector to one. To ensure that the
index is within the bounds of v, line 4 performs a modulo operation. For each
code change or query, the algorithm is invoked four times to map each of the
four feature sets into a fixed-size vector: parent-child and triangle features, for
both the old and new code.

3.3.4 Indexing and Retrieving Code Changes

To prepare for responding to queries, DiffSearch runs an offline phase that
indexes the given set of code changes. The indexing and retrieval components
of the approach build on FAISS, which is prior work on efficiently searching for
similar vectors across a large set of vectors [111]. In the first step of the offline
phase, DiffSearch parses all code changes and stores the parse trees on disk. In
the second step, DiffSearch generates the feature vectors of the code changes
using the corresponding parse trees. Given the set Vchanges of feature vectors of
all code changes, the approach computes an index into these vectors.
After the offline indexing phase, DiffSearch accepts queries. For a given

query, the approach computes a feature vector vquery (Section 3.3.3), and then
uses the index to efficiently retrieve the most similar feature vectors of code
changes. FAISS allows for efficiently answering approximate nearest neighbor
queries, without comparing the query against each vector in Vchanges. The nearest
neighbors are based on the L2 (Euclidean) distance. To ensure that the presence
of matching features is weighted higher than the absence of features, we multiply
vquery by a constant factor l

2 + 1 before running the nearest neighbor query. To
illustrate this decision consider an example with three feature vectors: A query
vQ = (0,0, 1), a potential match vP = (1, 1,1) with the third feature in common,
and a mismatch vM = (0,0, 0). Naively computing the Euclidean distances yields
d(vQ, vP) =

p
2 and d(vQ, vM) =

p
1, i.e., the mismatch would be closer to the

query than the potential match. To avoid this scenario, the query vector should be
vQ = (0, 0, m) such that d(vQ, vP)< d(vq, vM). Solving this inequality gives m> l

2 ,
which we achieve by multiplying the original vQ with l

2 + 1. For the example,
after multiplying vQ with the constant factor 3

2 + 1, we have d(vQ, vP) =
p

4.25

68 3 | DiffSearch: A Scalable and Precise Search Engine for Code Changes

and d(vQ, vM) =
p

6.25, i.e., the potential match is now closer to the query than
to the mismatch.
The approach retrieves the k most similar code changes for a given query.

Setting the value of k allows users to control the trade-off between efficiency
and recall. For example, if a user is interested in finding as many code changes
as possible, a larger k should be used. In the extreme case, DiffSearch can
also be used without the feature-based retrieval (equivalent to k =∞), which
will reduce the approach to linearly searching through all code changes, but
guarantees to find each matching code change. We use k = 5,000 by default,
and Section 3.5.5 evaluates other values. The retrieved candidate code changes
are ranked based on their L2 distance to the query, computed by FAISS, and we
use this ranking to sort the final search results shown to a user.

3.3.5 Matching of Candidate Search Results

Given the k candidate code changes retrieved for a given query as described
in Section 3.3.4, DiffSearch could return all of them to the user. However, the
feature-based search does not guarantee precision, i.e., that all the retrieved
code changes indeed match the query. One reason is that the features capture
only local information, but do not encode the entire parse tree in a lossless way.
Another reason is that the features do not encode the semantics of named place-
holders, i.e., they cannot ensure that placeholders are expanded consistently
across the old and new code.
To guarantee that all code changes returned in response to a query precisely

match the query, the matching component of DiffSearch takes the candidate
search results obtained via the feature-based retrieval and checks for each
candidate whether it indeed matches the query. Intuitively, a code change
matches a query if the placeholders and wildcards in the query can be expanded
in a way that yields code identical to the code change or some subset of the code
change. More formally, we define this idea as follows:

Definition 3.4 (Match)
Given a code change c→ c′ and a query q→ q′, let tc , tc′ , tq, tq′ be the corresponding
parse trees. The code change matches the query if

• tq can be expanded into some subtree of tc and

3.3 | Approach 69

• tq′ can be expanded into some subtree of tc′

so that all of the following conditions hold:

• Each placeholder is expanded into a subtree of the corresponding syntactic
entity.

• All occurrences of a named placeholder are consistently mapped to identical
subtrees.

• Each wildcard is expanded to an arbitrary, possibly empty subtree.

For example, consider the query and code change in Figure 3.3 again. They
match because the code change tree (a) can be expanded into the query tree (b).
The expansion maps the named placeholders ID<1> to isValidPoint, EXPR<1>
to the subtree that represents x, and EXPR<2> to the subtree that represents y.
Moreover the wildcards in the query are both mapped to the empty tree. As
an example of a code change that does not match this query, consider Code
change 1 from Section 3.2 again. The parse tree of the query cannot be expanded
into the parse tree of that code change because there is no way of expanding
the query tree while consistently mapping EXPR<1> and EXPR<2> to the three
method arguments a-1, b, and c.
To check whether a candidate code change indeed matches the given query,

DiffSearch compares the parse tree of the query with the parse tree of the code
change in a top-down, left-to-right manner. The basic idea is to search for a
mapping of nodes in the query tree to nodes in the parse tree that consistently
maps named placeholders to identical subtrees. On top of this basic idea, the
matching algorithm faces two interesting challenges. We illustrate the challenges
with the following query, which searches for code changes where two call
statements get replaced by an assignment of a literal to an identifier. The
following example shows the query on the left and a matching code change on
the right:

ID();
<...>
ID();

→ ID = LT;
foo();
bar();
baz();

→
x = 5;
foo();
y = 7;

The first challenge is because queries are allowed to match parts of a change,
which is useful to find relevant changes surrounded by other, irrelevant changed

70 3 | DiffSearch: A Scalable and Precise Search Engine for Code Changes

Algorithmus 3.2 Check if a code change matches a query.
Input: Code change c→ c′ and query q→ q′

Output: True if they match, False otherwise.
1: tc , tc′ ← parse(c→ c′)
2: tq , tq′ ← parse(q→ q′)
3: NtoMatch← (allNodes(q)∪ allNodes(q′)) \wildcards
4: W ← candidateMappings(tc , tc′ , tq , tq′)
5: while W is not empty do
6: M ← Take a mapping from W
7: nq ← nextUnmatchedNode(M , tq , tq′)
8: npq ← Parent of nq
9: npc ← Look up npq in M
10: for c in all not yet matched children of npc do
11: if canAddToMap(M , c, nq) then
12: M ′← Copy of M with nq 7→ c
13: if keys(M ′)∩ NtoMatch = ;
14: and isValid(M , tc , tc′ , tq , tq′) then
15: return true
16: end if
17: else
18: Add M ′ to W
19: end if
20: end for
21: end while

code. While useful, this property of queries also implies that the query may
match at multiple places within a given code change. In the above example, the
ID = LT; part of the query may match both x = 5; and y = 7;. The second
challenge is because queries may contain wildcards (<...>), which is useful to
leave parts of a query unspecified. Wildcards can match none, one, or multiple
statements or expressions, and hence, they may cause a single query to match
in multiple ways. For the above example, the wildcard could be between the
calls of foo and baz, between the calls of foo and bar, or between the calls of
bar and baz. Because of these two challenges, matching must consider different
ways of mapping a query onto a code change, which results in a search space of
possible matches that must be explored.
DiffSearch addresses these challenges in Algorithm 3.2, which checks whether

a given query and code change match. The algorithm starts by parsing the code
change into trees tc and tc′ , which represent the old and new part of the change,

3.3 | Approach 71

and likewise for the query. The core of the algorithm is a worklist-based search
through possible mappings between nodes in the parse tree of the query and
nodes in the parse tree of the code change. These mappings are represented
as a map M from nodes in the query trees to nodes in the code change trees.
Each mapping M in the worklist W represents a possible way of matching the
query against the code change. To determine whether all nodes in the query
have been successfully mapped, the algorithm maintains a set NtoMatch of all the
nodes in the query that must be matched. The algorithm explores mappings in
W until it either finds a mapping that covers all nodes in NtoMatch, or until it has
unsuccessfully explored all mappings in W .
Algorithm 3.2 relies on several helper functions. One of them,

candidateMappings, computes the starting points for the algorithm by returning
all possible mappings of the roots of tq and tq′ to nodes in the code change
trees. The nextUnmatchedNode function performs a top-down, left-to-right pass
through the query trees to find a node that is not yet in the current map M .
The canAddToMap function checks if adding a mapping nq 7→ c is consistent with
an already existing map M . Specifically, it checks that nq is not yet among the
keys of M , that c is not yet among the values of M , and that the two nodes
are either identical non-placeholder nodes or that nq is a placeholder that can
be consistently mapped to c as specified in Definition 3.4. Finally, the helper
function isValid checks whether a mapping M that covers all to-be-matched nodes
ignores nodes in the change tree only when there is a corresponding wildcard
in the query tree. The algorithm postpones this check to isValid to reduce the
total number of mappings to explore.
Matching a single code change against a query might cause the algorithm to

explore many different mappings, and DiffSearch typically invokes Algorithm 3.2
not only once but for tens or hundreds of candidate search results. To ensure
that the approach responds to queries quickly enough for interactive usage, we
optimize Algorithm 3.2 by pruning code changes that certainly cannot match a
given query. To this end, the approach checks if all leaf nodes in the parse tree
of a query occur at least once in the parse tree of the code change. For example,
consider the following query, which searches for changes in the right-hand side

72 3 | DiffSearch: A Scalable and Precise Search Engine for Code Changes

of assignments to a variable myVar:21

myVar = LT; → myVar = LT;

If a code change does not include any token myVar, then the optimization
immediately decides that the code change cannot match the query and skips
Algorithm 3.2, similar to Coccinelle [130].

3.4 Implementation

We implement the DiffSearch idea in a practical search engine that supports mul-
tiple programming languages, currently Java, JavaScript, and Python. To gather
raw code changes, the implementation uses ”git log -p”. For each change, a parse
tree is created using ANTLR4,22 using the grammar of the target programming
language, modified to support queries and to allow for syntactically incomplete
code fragments (Section 3.3.1). The indexing and retrieval components build
on the FAISS library [111], which supports efficient vector similarity queries
for up to billions of vectors. Once changes are indexed, the search engine is a
server that responds to queries via one of two publicly available interfaces: a
web interface for interactive usage and a web service for larger-scale usage, e.g.,
to create a dataset of changes.23

21Because the myVar = part of the code remains the same, the query expresses that the literal
captured by the unnamed placeholder LT is changing.

22https://www.antlr.org/
23http://diffsearch.software-lab.org

3.4 | Implementation 73

https://www.antlr.org/
http://diffsearch.software-lab.org

3.5 Evaluation

Our evaluation focuses on six research questions:

• RQ1: What is the recall of DiffSearch? (Section 3.5.1)

• RQ2: How efficient and scalable is DiffSearch? (Section 3.5.2)

• RQ3: Does DiffSearch enable users to find relevant code changes more
effectively than a regular expression-based search through raw diffs?
(Section 3.5.3)

• RQ4: Is DiffSearch useful for finding examples of recurring bug fix pat-
terns? (Section 3.5.4)

• RQ5: How do parameters of the approach influence the results? (Sec-
tion 3.5.5)

• RQ6: How do queries and search results compare in terms of their size
and absolute number? (Section 3.5.6)

For each of RQ1, RQ2, RQ5, and RQ6, we present results for all three currently
supported target languages: Java, JavaScript, and Python. For each language,
we gather at least one million code changes from repositories that are among
the top 100 of their language based on GitHub stars. We compute the average
size of the code change pair (old code and new code) in these datasets. The
datasets do not contain commit messages, meta-information or code context,
but only the removed and added lines, as represented in the diff. As a result,
we count the number of ’\n’ in each pair using the bash command "grep -o ’\n’
dataset | wc -l" and we find an average number of lines per each pair of 13.4,
8.2, and 7.3 for Java, Python and JavaScript, respectively. For RQ3 and RQ4,
we focus on Java as the target language because RQ3 is based on a user study
and because RQ4 builds on a Java dataset created by prior work [115]. The
experiments are performed on a server with 48 Intel Xeon CPU cores clocked at
2.2GHz, 250GB of RAM, running Ubuntu 18.04.

74 3 | DiffSearch: A Scalable and Precise Search Engine for Code Changes

3.5.1 RQ1: Recall

While the precision of DiffSearch’s results is guaranteed by design (Section 3.3.5),
the approach may miss code changes due to its feature-based search, which
ensures scalability but may fail to include an expected code change into the
candidate matches. Additionally, DiffSearch only considers k candidate changes,
so it can find at most k results even though queries could have more than k

matching code changes.
To establish a ground truth, we randomly sample code changes c→ c′ from

all indexed Java, Python, and JavaScript code changes and formulate a corre-
sponding query q → q′ using the following four strategies. The as-is strategy
simply copies c into q and c′ into q′. The less-placeholders strategy replaces some
of the identifiers, operators, and literals with corresponding placeholders or
wildcards. The more-placeholders strategy, similarly, replaces the majority of
the identifiers, operators, and literals. Finally, the generalized strategy replaces
most or all of the identifiers, operators, and literals. For each strategy and each
programming language, we randomly sample 20 code changes and construct
a query for each one. We then compare each query against all 1,001,797 Java,
1,007,543 JavaScript, and 1,016,619 Python code changes using the matching
component of DiffSearch. While significantly slower than the feature-supported
search that DiffSearch uses otherwise, this approach allows us to determine the
set of all code changes expected to be found for a query, because Algorithm 3.2
precisely computes whether a code change matches a query. By design of Diff-
Search (Section 3.3.5) and the way we construct the ground truth, the precision
and the mean reciprocal rank (MRR) are 100% and 1.0, respectively, and we
hence do not report them in Table 3.2.
Table 3.2 shows the recall of DiffSearch w.r.t. the ground truth, i.e., the

percentage of all ground truth code changes that the approach finds. On average
across the 80 queries per programming language, DiffSearch has a recall of
80.7% for Java, 89.6% for Python, and 90.4% for JavaScript. More specific
queries tend to lead to a higher recall. The reason is that the parse tree of a
more generalized query shares fewer features with a matching code change,
e.g., because a complex subtree is folded into an EXPR node. The slightly higher
recall for Python and JavaScript can be explained by two observations. First,

3.5 | Evaluation 75

Table 3.2: Recall of DiffSearch across 80 queries per language.

Queries Java Python JavaScript

As-is 90.6% 100.0% 100.0%
Less-placeholders 83.5% 99.9% 99.8%
More-placeholders 74.2% 96.7% 95.8%
Generalized 76.7% 74.9% 66.1%

Total 80.7% 89.6% 90.4%

code changes in Java tend to be slightly larger, causing more nodes on the parse
trees, which reduces the chance to find a suitable candidate change, e.g. because
the probability of hash collisions is higher if there are more features. Second,
across the 80 queries, there are 236,836 ground truth code changes for Java,
but only 69,626 and 59,789 for Python and JavaScript, respectively, making
finding all ground truth code changes in Java a harder problem. We discuss in
Section 3.5.5 that the recall can be increased even further by retrieving more
candidate matches, at the expense of a slightly increased response time.

3.5.2 RQ2: Efficiency and Scalability

A major goal of this work is to enable quickly searching through hundreds of
thousands of code changes. The following evaluates how the number of code
changes to search through influences the efficiency of queries, i.e., how well
DiffSearch scales to large amounts of changes. As queries to run, we use the
80 queries described in Section 3.5.1. For each query, we measure how long
DiffSearch takes to retrieve code changes from ten increasingly large datasets,
ranging from 10,000 to 1,000,000 code changes.
The top row of Figure 3.4 shows the results for the full DiffSearch approach.

Answering a query typically takes between 0.5 and 2 seconds. Moreover, the
response time remains constant when searching through more code changes.
The reasons are (i) that FAISS [111] provides constant-time retrieval in the
vector space, and (ii) that the time for matching candidate changes against the
query is proportional to the constant number k of candidate changes. Comparing
the three programming languages, we find that they yield similar performance

76 3 | DiffSearch: A Scalable and Precise Search Engine for Code Changes

50000
250000

400000
600000

850000
1000000

Changes

0

1

2

3

4

5
Ti

m
e

(s
ec

on
ds

)

(a) DiffSearch (Java).

50000
250000

400000
600000

850000
1000000

Changes

0

1

2

3

4

5

Ti
m

e
(s

ec
on

ds
)

(b) DiffSearch (Python).

50000
250000

400000
600000

850000
1000000

Changes

0

1

2

3

4

5

Ti
m

e
(s

ec
on

ds
)

(c) DiffSearch (JavaScript).

50000
250000

400000
600000

850000
1000000

Changes

0

20

40

60

80

100

Ti
m

e
(s

ec
on

ds
)

(d) DiffSearch without
indexing
(Java).

50000
250000

400000
600000

850000
1000000

Changes

0

20

40

60

80

100
Ti

m
e

(s
ec

on
ds

)

(e) DiffSearch without
indexing
(Python).

50000
250000

400000
600000

850000
1000000

Changes

0

20

40

60

80

100

Ti
m

e
(s

ec
on

ds
)

(f) DiffSearch without
indexing
(JavaScript).

Figure 3.4: Response time across differently sized datasets (average and 95%
confidence interval). Top: Full DiffSearch. Bottom: DiffSearch
without indexing.

results, which is due to the fact that most parts of our implementation are
language-agnostic. We conclude that DiffSearch scales well to hundreds of
thousands of changes and remains efficient enough for interactive use.
The bottom row of Figure 3.4 shows the same experiment when removing the

indexing and retrieval steps of DiffSearch (note: different y-axis). Instead, the
approach linearly goes through all code changes and compares them against a
given query using the matching component only. Answering a query takes up to
41 seconds on average, showing that the feature-based indexing is essential to
ensure DiffSearch’s scalability.
Even though scalability is most relevant for the online part of DiffSearch, we

also measure how long the offline part takes. In total, analyzing a million code
changes to extract feature vectors and indexing these vectors takes up to five

3.5 | Evaluation 77

hours. As this is a one-time effort that does not influence the response time, we
consider it acceptable in practice.

3.5.3 RQ3: User Study

Study Setup

We perform a user study to measure whether DiffSearch enables users to ef-
fectively retrieve code changes within a given time budget, and to compare
our approach with a regular expression-based baseline and the GitHub Search
feature. To this end, we provide natural language descriptions of kinds of code
changes and ask each user to find up to ten matching code changes per de-
scription within two minutes. We choose this time limit based on empirical
results on code search sessions, which are reported to have a median length of
89 seconds [223], and to control the overall time participants of the study will
have to spend. We then ask the users how many satisfying code changes they
could find. Each user works on each kind of query with DiffSearch, the REGEX
tool and GitHub Search.
Queries. The descriptions of the queries (Table 3.3) are designed with two

criteria in mind. First, they cover different syntactic categories of changes,
including additions (#3, #4, #7), modifications (#6), and removals (#10) of
statements; changes within existing statements (#1, #2, #5, #9); and changes
that surround an existing statement with a new statement (#8). Second, the
queries cover a diverse range of reasons for changing code, including code
improvements to increase robustness (#4, #7, #8), code cleanup (#10), changes
of functionality (#6, #9), bug fixes (#1, #2, #5), and uses of a new API (#3).

Baselines. We compare DiffSearch against two existing tools that users might
use to search for code changes. First, we compare against a regular expression-
based approach suggested in the Stack Overflow question cited in Section 3.1,
which we call REGEX. Regular expressions are well known and widely used for
general search tasks. Naively applying regular expressions to the git history
of many projects, as suggested on Stack Overflow, leads to unacceptably high
response times (tens or even hundreds of seconds, depending on the query).
Instead, we preprocess the output of git log by removing information unrelated
to the task, such as commit messages and file names, which reduces the size of

78 3 | DiffSearch: A Scalable and Precise Search Engine for Code Changes

the file and makes the response time acceptable. Second, we compare against
the search feature offered by GitHub, which matches free-form queries against
commits, presumably through an indexing and retrieval approach applied to
the commit message and the tokens involved in a commit. To ensure that our
study participants search through the same dataset as DiffSearch, instead of all
commits on GitHub, we create a single repository24 with all code changes in our
dataset, copied from the original version histories, and then restrict GitHub’s
search to this repository.
Participants and setup. We recruit ten participants, consisting of seven PhD

students, two senior undergraduate students, and one senior developer. The
participants do not overlap with the authors of the paper [41]. The user study is
performed virtually with participants working from their offices or their homes.
We ask each participant to assess for each of the three tools involved in the
study their level of experience (expert, advanced, intermediate, or beginner)
and their usage frequency (weekly,monthly, yearly, or never used). None of the
participants has previous experience with DiffSearch. Regarding their experience
with REGEX, four participants are advanced, five are at intermediate level, and one
is a beginner. Seven participants use REGEX monthly, and three participants even
weekly. For GitHub Search, one participant is advanced, five are intermediate,
and four are beginners. Two participants use it yearly, fourmonthly, three weekly,
and one has never used it.
The participants access DiffSearch through a web interface that resembles a

standard search engine, but has two text input fields, for the old and new code,
respectively.25 For REGEX, participants use a terminal and their favorite tool to
search with regular expressions, e.g., grep. For GitHub Search we provide a link
to GitHub that already restricts the search to commits in the repository created
for this user study. We provide 1,050 words of instructions to the participants,
which explain the task, the query language of DiffSearch, how to search through
raw diffs using REGEX, and GitHub Search.

24https://github.com/luca-digrazia/DatasetCommitsDiffSearch
25The web interface is available, see end of Section 3.1.

3.5 | Evaluation 79

https://github.com/luca-digrazia/DatasetCommitsDiffSearch

Table
3.3:Q

uery
descriptionsforuserstudy

and
sum
m
ary
ofsearch

results.
Id

Q
uery

description
D
iff

Search
/
REG

EX
/
G
itH

ub
Search

User1
User2

User3
User4

User5
User6

User7
User8

User9
User10

Total

1

Find
changesin

w
hich

a
return

statem
entthatreturnsa

literal
changesto

returning
the
result

ofa
m
ethod

call.

10/0/0
10/0/0

0/10/0
0/0/10

10/0/0
7/0/0

10/0/3
7/0/5

7/0/0
7/0/1

68/10/19

2
Find

changesw
here

the
developersw

apsthe
argum

ents
ofa

m
ethod

call.
0/0/0

0/0/0
10/0/6

10/0/1
10/0/6

0/0/0
10/0/0

10/0/0
10/0/10

10/0/0
70/0/23

3
Find

changesthatadd
an
im
port

ofa
classin

the
form

“im
portsom

ePkg.Som
eClass”.

10/0/10
0/10/10

10/10/4
10/10/10

0/10/8
10/10/10

10/10/7
10/0/7

10/0/10
10/0/10

80/60/86

4
Find

changesthatadd
a
call

to
close

som
e
resource,e.g.,

a
stream

orfile
reader.

0/0/3
10/10/1

10/10/1
10/0/10

10/10/1
0/10/0

10/10/2
10/0/10

10/0/0
10/10/1

80/60/29

5

Find
changesw

here
the

condition
ofan

ifstatem
ent

w
ith
a
bodychangesfrom

“-=
null”

to
“!=
null”.

4/0/0
10/0/0

4/5/0
0/0/10

7/0/0
0/0/1

4/0/0
4/0/0

0/0/0
5/0/0

38/7/11

6
Find

changesthatrem
ove

a
m
ethod

callw
ith

one
argum

ent.
10/0/10

10/1/1
10/10/10

10/0/0
10/0/10

10/10/1
10/10/0

10/0/0
10/0/6

10/0/0
100/31/38

7
Find

changesthatinsert
an
assertion

using
Java’s“assert”

keyw
ord.

10/0/6
10/10/10

0/10/0
0/2/10

10/10/2
0/10/0

10/10/2
10/0/3

10/0/0
10/10/0

70/62/33

8
Find

changesin
w
hich

a
code

snippetissurrounded
w
ith
a
try/catch

block.
0/0/0

0/0/5
0/0/1

0/0/0
0/0/1

10/10/3
4/10/4

10/0/3
0/0/5

1/0/5
25/0/27

9
Find

changesw
here

the
condition

ofa
w
hile

loop
ischanged.

10/0/0
10/10/1

10/2/0
10/0/0

10/0/1
0/0/1

10/0/0
0/0/0

10/0/0
10/0/0

90/13/3

10
Find

changesthatrem
ove

a
callto

System
.out.println(...).

10/0/6
10/10/4

10/10/1
10/0/10

10/10/5
10/10/1

10/10/2
10/0/3

10/0/1
10/0/0

100/60/33

Total
64/0/35

70/51/32
64/67/23

64/12/61
60/40/34

47/53/17
88/50/20

81/0/31
77/0/32

83/30/17
711/303/302

80 3 | DiffSearch: A Scalable and Precise Search Engine for Code Changes

Quantitative Results

Table 3.3 shows the number of search results obtained using DiffSearch and
REGEX. Across the entire study, the participants find 711 code changes with
DiffSearch, but only 303 with REGEX and 302 with GitHub Search. Inspecting
individual queries shows that, while some are harder than others, at least one
user finds ten code changes for each query. For 77.0% of DiffSearch queries,
users retrieve at least one code change with DiffSearch, whereas with REGEX,
users get at least one code change for only 35.0% of all queries, and 60.0% of
GitHub Search queries lead to at least one code change. For 65.0% of DiffSearch
queries, users find the desired number of ten code changes, but only 29.0% of
users succeed with REGEX and 15.0% with GitHub Search. Overall, we conclude
that DiffSearch enables users to effectively find code changes, and that the
approach clearly outperforms the REGEX-based and GitHub Search baseline.

Qualitative Results

To better understand the strengths and weaknesses of DiffSearch, we manually
inspect queries formulated by users. All the users get enough results for query #6,
e.g., with queries such as ”ID(EXPR);→ _”, underlining how easy it is querying
DiffSearch. Another example is query #10, where all participants use a query
similar to ”System.out.println(EXPR);→ _”, which yields 10 satisfying results.
The user study also shows how fast the participants learn to use DiffSearch. For
example, Users 2 and 5 on query #3 find zero code changes with DiffSearch,
while they find 10 code changes on query #4 because they have learned more
about the query syntax. As another example, User 2 for query #3 uses queries
like ”_ → import LT().LT()” and ”_ → import LT<...>.LT<...>”, which are
syntactically invalid. After some tries the user understands the query and they
perform better on the following queries.
When asking participants about their experience after the experiment, some

users report difficulties in formulating precise queries on GitHub Search. For
example, for query #6 a user says: "found many other method calls with more
than one argument that were removed as well". For query #7 a user states: "I
could find some more code that uses assert but not specifically that inserts an

3.5 | Evaluation 81

assert keyword". These examples illustrate that DiffSearch is particularly useful
when searching for non-trivial code changes and to avoid false positive results.
While DiffSearch clearly outperforms REGEX and GitHub Search for all ten

queries, there are some user-query pairs where REGEX and GitHub Search yields
more results than DiffSearch. Analyzing these cases shows two main reasons.
First, some users were effective with regular expressions by searching for simple
code changes that only add or only remove a single line of code. For example,
for query #3, some users simply searched for “+ import (.*)”. Instead, for the
same query GitHub Search has the best performance because users find precise
commit messages for this kind of code change. Second, some users formulated
regular expression queries that are more general than the natural language
description we provide and then manually filtered the results to find the ten
relevant code changes. For example, for query #5, a user searched for “if((.*?))”
and then manually checked for conditions that involve null. Finally, Users 3
and 6 find more code changes with REGEX than the other two tools. These users
judge their REGEX experience with advanced and intermediate, respectively, and
they both use REGEX monthly, which they affirm to have helped them to be
effective with REGEX on this task.
We also asked for informal feedback about the three tools, to better under-

stand their strengths and weaknesses. Users report three reasons for preferring
DiffSearch over REGEX and GitHub Search. First, they find the DiffSearch query
more precise than regular expression syntax or free-form queries, because it
builds upon the underlying programming language. In particular, some users
affirm that in two minutes they were able to type a DiffSearch query, but not a
working regular expression, especially for complex queries, such as multi-line
code changes. Second, REGEX often was much slower than DiffSearch because
it linearly searches through all code changes, while GitHub Search often shows
commits with so many hunks that it is difficult to find a specific code change.
This inefficiency, especially for more complex code changes, caused some users
to not find any relevant code changes in the given time. Finally, some users
mention that REGEX syntax is not precise enough to formulate effective queries,
leading to many false positives.

82 3 | DiffSearch: A Scalable and Precise Search Engine for Code Changes

3.5.4 RQ4: Searching for Bug Fixes

As a case study for using DiffSearch, we apply it to search for instances of bug
fix patterns, which could help, e.g., to establish a dataset for evaluating bug
detection tools [85], automated program repair tools [10], or for training a
learning-based bug detection tool [204]. We build on a set of 16 patterns defined
by prior work [115], of which we use twelve (Table 3.4). The remaining four
bug fix patterns are all about single-token changes, e.g., changing a numeric
literal or changing a modifier, which currently cannot be expressed with our
query language. For the twelve supported patterns, we formulate queries based
on the descriptions of the patterns and then search for them with DiffSearch.
We use two different datasets for this case study. First, a set of around 10,000
code changes, called SStuBs commits, that contains all those commits where the
prior work [115] found instances of the bug fix patterns through custom-built
analysis scripts, which we call SStuBs. Second, a set of around 1,000,000 code
changes, called Large, sampled from all the repositories analyzed in the prior
work.
Table 3.4 shows for each bug fix pattern how many code changes the different

approaches find. DiffSearch returns a total of 15,959 code changes for the first
dataset and 74,903 for the second dataset. Computing the intersection with the
results retrieved by SStuBs, DiffSearch finds 79.2% of their changes, a result
consistent with the Java recall computed in RQ1. Moreover, DiffSearch finds
many more matching code changes, increasing the dataset from 2,867 to 15,959
examples of bug fixes. The reason is that our queries are more general than
the custom analysis scripts in SStuBs and include, e.g., also code changes that
perform other changes besides the specific bug fix. The number of code changes
found by DiffSearch is higher than the number of commits (10k) because a
single commit may match multiple patterns. For example, a change that swaps
two arguments and modifies a function name will appear in patterns 5 and 8.
Overall, DiffSearch is effective at finding various examples of bug fix patterns,
showing the usefulness of the approach for creating large-scale datasets.

3.5 | Evaluation 83

Table 3.4: Effectiveness of DiffSearch in finding instances of bug fix pat-
terns [115].

Description SStuBs commits (10k) Large (1M)

SStuBs DiffSearch Both DiffSearch

1 Change only caller 132 1,880 121 5,974
2 Change binary operator 211 347 131 2,979
3 More specific if 130 592 116 5,660
4 Less specific if 166 592 150 5,387
5 Wrong function name 1,141 1,439 935 8,109
6 Same caller, more args 557 2,108 432 11,207
7 Same caller, less args 110 2,123 75 10,798
8 Same caller, swap args 98 2,285 89 9,042
9 Change unary operator 126 134 70 6,081
10 Change binary operand 91 347 73 2,136
11 Add throws exception 60 1,834 34 3,848
12 Delete throws exception 45 2,278 44 3,682

Total 2,867 15,959 2,270 74,903

3.5.5 RQ5: Impact of Parameters

We perform a sensitivity analysis for the two main parameters of DiffSearch:
the length l of feature vectors (Section 3.3.3), and the number k of candidate
matches retrieved via the feature vectors (Section 3.3.4). We select a set of
values from 1,000 to 20,000 for k and from 500 to 4,000 for l, i.e., values below
and above the defaults, and then measure their impact on the time to answer
queries, the recall, and the size of the index.
Table 3.5 shows the results. We find that retrieving more candidate code

changes, i.e., a higher k, slightly increases the response time. The reason is
that matching more code changes against the query increases the time taken
by the matching phase. On the positive side, increasing k increases the recall,
reaching 87.3% for Java, 93.7% for Python, and 95.6% for JavaScript when
k=20,000, while still providing an acceptable average response time. Parameter
l increases the time to answer a query because a larger feature vector slows
down the nearest neighbor search. Likewise, a larger l also increases the size of

84 3 | DiffSearch: A Scalable and Precise Search Engine for Code Changes

the index. Since increasing l beyond our default does not significantly increase
recall, we use l=1,000 as the default to have a manageable index size and a
reasonable response time. As a result, users can adjust the parameters based on
their usage scenario. They can use a higher k if they prefer recall over efficiency,
or a lower k if they prefer the opposite.

3.5.6 RQ6: Queries vs. Search Results

The goal of performing a search is to obtain more information than provided in
the query. To assess to what extent DiffSearch serves this purpose by characteriz-
ing queries and the resulting search results in two ways. These experiments are
done on all three currently supported languages, using the 80 queries described
in RQ1.
First, we quantify the number of results obtained via a single query. We

compute the average number of code changes retrieved by DiffSearch among
the 80 queries. We find an average of 646 results for Java, 269 for Python, and
280 for JavaScript. As a result, we can conclude that typing a single DiffSearch
query results in a significant amount of information retrieved.
Second, we approximate the amount of information in a query and the result-

ing search results by counting the number of characters they are composed of.
For the results with multiple code changes we compute the average of their size.
We find an average query size of 95 and an average result size of 136 for Java,
an average query size of 47 and an average result size of 67 for Python, and an
average query size of 34 and an average result size of 55 for JavaScript. As a
result, we can conclude that the result of DiffSearch queries contains 29.9%,
29.8%, and 38.2% more information than provided in the query for Java, Python
and JavaScript, respectively.
In conclusion, we show that the effort to type a DiffSearch query has benefits

in the quantity of information retrieved.

3.5 | Evaluation 85

Table 3.5: Impact of length l of feature vectors and number k of candidates
(default configuration is (bold).

k l Response time (s) Recall Size of

min avg max (%) index (GB)

Java:

1,000 1,000 1.5 1.9 3.5 71.8 4.0
5,000 1,000 1.5 2.2 9.0 80.7 4.0
10,000 1,000 1.7 2.5 9.4 84.9 4.0
20,000 1,000 1.8 3.1 17.7 87.3 4.0
5,000 500 0.8 1.3 8.1 79.3 2.0
5,000 2,000 3.0 4.2 9.9 80.6 8.0
5,000 4,000 5.8 7.4 15.3 78.1 16.0

Python:

1,000 1,000 3.0 4.1 5.5 81.9 4.1
5,000 1,000 1.8 2.4 3.5 89.8 4.1
10,000 1,000 3.5 5.0 8.9 91.6 4.1
20,000 1,000 4.1 6.0 12.4 93.7 4.1
5,000 500 1.0 1.6 3.1 86.6 2.0
5,000 2,000 2.7 4.9 40.8 89.8 8.1
5,000 4,000 6.1 7.9 13.1 83.4 16.3

JavaScript:

1,000 1,000 1.2 1.9 2.8 85.4 4.0
5,000 1,000 1.3 2.0 2.8 90.4 4.0
10,000 1,000 1.4 2.3 3.3 94.0 4.0
20,000 1,000 1.8 2.9 5.7 95.6 4.0
5,000 500 0.7 1.2 2.1 90.3 2.0
5,000 2,000 3.1 4.5 5.4 92.5 8.0
5,000 4,000 5.1 9.2 12.8 88.6 16.1

86 3 | DiffSearch: A Scalable and Precise Search Engine for Code Changes

3.6 Limitations and Future Work

Our approach has some limitations that will be interesting to address in future
work. First, in Section 3.3.2, we explain the challenge of parsing incomplete parse
trees. We extend the ANTLR4 grammar for the target programming languages
with optional rules to parse incomplete snippets of code that commonly occur in
hunks. These extensions cover most but not all hunks, and we plan to enable
parsing of an even larger range of incomplete code snippets in the future. Second,
our approach of parsing individual hunks will be non-trivial to apply to languages
that make heavy use of macros, such as C. The reason is that, when trying to parse
a single hunk, the definitions of macros are not available. Finally, Section 3.3.3
describes the features we design for code changes. Future work could either
extend those features with other features or apply neural networks that learn to
map code changes into continuous vector representations, such as CC2Vec [98]
and Commit2Vec [27].

3.7 Concluding Remarks

We present a scalable and precise search engine for code changes. Given a query
that describes code before and after a change, the approach retrieves within
seconds relevant examples from a corpus of a million code changes. Our query
language extends the underlying programming language with wildcards and
placeholders, providing an intuitive way of formulating queries to search for
code changes. Key to the scalability of DiffSearch is to encode both queries
and code changes into a common feature space, enabling efficient retrieval of
candidate search results. Matching these candidates against the query guaran-
tees that every returned search result indeed fits the query. The approach is
mostly language-agnostic, and we empirically evaluate it on Java, JavaScript,
and Python. DiffSearch answers most queries in less than a second, even when
searching through large datasets. The recall ranges between 80.7% and 90.4%,
depending on the target language, and can be further increased at the expense
of response time. We also show that users find relevant code changes more effec-
tively with DiffSearch than with a regular expression-based search and GitHub
Search. Finally, as an example of how the approach could help researchers, we

3.7 | Concluding Remarks 87

use it to gather a dataset of 74,903 code changes that match recurring bug fix
patterns. We envision DiffSearch to serve as a tool useful to both practitioners
and researchers, and to provide a basis for future work on searching for code
changes.

88 3 | DiffSearch: A Scalable and Precise Search Engine for Code Changes

Ch
ap
te
r 4

The evolution of type annotations in
Python: an empirical study

Type annotations and gradual type checkers attempt to reveal errors and fa-
cilitate maintenance in dynamically typed programming languages. Despite
the availability of these features and tools, it is currently unclear how quickly
developers are adopting them, what strategies they follow when doing so, and
whether adding type annotations reveals more type errors. This chapter presents
the first large-scale empirical study of the evolution of type annotations and type
errors in Python. The study is based on an analysis of 1,414,936 type annota-
tion changes, which we extract from 1,123,393 commits among 9,655 projects.
Our results show that (i) type annotations are getting more popular, and once
added, often remain unchanged in the projects for a long time, (ii) projects
follow three evolution patterns for type annotation usage – regular annotation,
type sprints, and occasional uses – and that the used pattern correlates with the
number of contributors, (iii) more type annotations help find more type errors
(0.704 correlation), but nevertheless, many commits (78.3%) are committed
despite having such errors. Our findings show that better developer training and
automated techniques for adding type annotations are needed, as most code

89

still remains unannotated, and they call for a better integration of gradual type
checking into the development process.

4.1 Introduction

Dynamically typed languages, such as Python and JavaScript, have become the
most popular languages for newly written code.26 One reason for this popularity
is their lightweight syntax, which does not require developers to specify the types
of parameters, return values, fields, or variables. At the same type, the absence
of static type annotations often hampers maintenance, causes type-related bugs
to be missed, and limits IDE support.
The problems caused by the complete absence of type annotations has moti-

vated optional type annotations. They offer a flexible middle ground between
no type annotations at all and a fully statically typed language, enabling each
developer to annotate only those types she believes to be beneficial. The two
most popular dynamically typed languages, Python and JavaScript, both support
optional type annotations. In particular, Python 3.5 specifies the meaning of
type annotations for functions,27 and Python 3.6 adds syntax for specifying the
types of variables.28

In recent years, a variety of tools have been proposed for helping developers
deal with type annotations in dynamically typed languages. Gradual type
checkers [188, 257] use the available type annotations, possibly along with type
information for popular libraries, to check for type errors. Beyond gradual type
checkers, recent work proposes techniques to infer and predict type annotations,
based on static analysis [7, 63, 91, 106], dynamic analysis [6, 216], probabilistic
rules [278], learned predictive models [4, 92, 157, 213], and combinations
of the former [203]. Such tools help annotate code with types, in particular
code written before the standardized introduction of type annotations into the
programming language.
Figure 4.1 shows an example of a partially type-annotated Python function

and its evolution across three commits, which illustrates different kinds of type

26https://octoverse.github.com/
27https://www.python.org/dev/peps/pep-0484/
28https://www.python.org/dev/peps/pep-0526/

90 4 | The evolution of type annotations in Python: an empirical study

https://octoverse.github.com/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0526/

(a) Commit 1.

def f(x: float, y):
sum = x + y
if (sum % 2) == 0:

return True

(b) Commit 2.

def f(x: int, y) -> bool:
sum: int = x + y
if (sum % 2) == 0:

return True

(c) Commit 3.

def f(x: int, y) -> Optional[bool]:
sum: int = x + y
if (sum % 2) == 0:

return True

Figure 4.1: Example of an evolving, partially type-annotated Python function.

annotations, how they may evolve, and type errors that may become apparent
as a result. The function expects two parameters and returns whether their sum
is an even number. In Commit 1, the first parameter is initially annotated to be
of type float, whereas the second parameter remains unannotated. Commit 2
updates the parameter type of x from float to int, and also inserts an annotation
of the return type being bool. Moreover, the code change inserts an annotation
for the sum variable to be of type int. Type checking Commit 2 will produce a
type error because not all paths through the function return a boolean, but the
function implicitly returns None when the sum is not even. Finally, Commit 3
fixes the type error by modifying the return type annotation to Optional[bool].
Several years have passed since the release of Python 3.5 in 2015 and type

annotations are hypothesized to be useful to developers, but it is currently
unclear how often they are adopted in practice and how this trend is evolving.
How frequently do people use this feature? And how has its usage changed
over time? This serves to double check if adding type information to the Python
language is actually perceived as a benefit worth undertaking by developers.
Moreover, the gradual type system of Python defines several standard library
types such as int, List, and Optional. Which of those are the most useful
to developers? And which of those have the most changes? We can find that
adding those types is non-trivial, and they sometimes result in incorrect type
annotations. What impact do the annotations have on detected type errors, and
if errors are detected, do developers address them? This helps to understand if
type checkers are useful during the development process. As a result, answering
these and other questions consist in better understanding the adoption of type
annotations in Python, identify issues that developer’s commonly face in this
process, and steer future research on developer tools toward the most relevant

4.1 | Introduction 91

problems.
This chapter presents the first comprehensive study of the evolution of type

annotations and type errors in Python. The study is performed on 9,655 of the
most popular Python projects, analyzes 1,123,393 commits, and studies 668
projects in more detail, as they contain at least one annotation. We address four
research questions:

• RQ1: How does the adoption of type annotations evolve at the ecosystem
level? To better understand to what extent type annotations are getting
adopted by the developer community as a whole, we study the evolution
of the prevalence of type annotations across a wide range of projects.

• RQ2: How does the usage of type annotations evolve at the project level? This
question aims at understanding the evolution of type annotations based
on a commit-based timeline of single projects.

• RQ3: How do individual type annotations evolve? Answering this question
helps understand if and how type annotations, once inserted, change over
time. We also study whether type annotations are added alongside other
code changes or in specific commits, and how long they remain in a code
base.

• RQ4: How do statically detectable type errors evolve and how do they relate
to the type annotations in a project? This question aims at understanding to
what extent gradual type checkers can help avoid type errors, whether de-
velopers fix these errors, and how they are impacted by adding, changing,
or removing annotations.

Our methodology is based on an AST-based analysis to extract type annota-
tions, a differential analysis to understand how type annotations evolve over
time, and gradual type checking on different versions of the projects.
Prior work has studied other aspects of dynamically typed programming

languages, e.g., whether developers migrate from Python 2 to Python 3 [275],
how linters are used in JavaScript [252], and whether type annotations in
JavaScript [65] and Python [121] reveal bugs. Ore et al. assess the human
effort involved in adding type annotations[187], and Hanenberg et al. study the
impact of type annotations on development time [87] and maintainability [88].

92 4 | The evolution of type annotations in Python: an empirical study

Another recent study [211] is about the kinds of type annotations developers use
and how the errors reported by different gradual type checkers differ. In contrast
to all the above, our study focuses on the evolution of types and type errors over
time, allowing us to better understand the long-term trends in adopting gradual
typing.
Our study leads to several findings regarding the prevalence, characteristics,

and evolution of type annotations and type errors in real-world Python code,
including:

• Type annotations are getting more and more popular, but are still far from
being the norm. Less than 10% of all possible code elements are currently
annotated, even in projects that have at least one type annotation. This
trend is slowly changing in favor of more annotations, offering a huge
opportunity for researchers and practitioners to build tools that help with
this process.

• Most type annotations are added alongside other code, but developers
also occasionally (1.3% of all type-editing commits) work on the type
annotations only.

• Developers mostly focus on annotating parameter types and return types,
and less on variable types.

• Once added, many type annotations are never updated (90.1%) and many
type annotations (70.4%) are still present in the latest version of a project,
rewarding the effort of adding type annotations. If developers change type
annotations, then optional types are commonly involved in the change.

• Most commits (78.3%) contain statically detectable type errors but are
nevertheless integrated into the code base.

• Adding type annotations tends to increase the number of detected type
errors (correlation of 0.704).

Our findings have several implications for developers and researchers working
on developer tooling. First, we find that adding type annotations is a long-term
investment because they are rarely modified, which can impact the maintainabil-
ity of a code base over years. Second, the result that more than 90% of program

4.1 | Introduction 93

elements are not yet annotated, both in legacy code and newly written code,
is a call to arms for creating tools that infer and predict types. Recent work on
learning-based type prediction is a promising step [92, 157, 203]. Third, the
repetitive nature of type annotation changes pinpoints several easy to avoid
mistakes, such as avoiding corner cases using a type T instead of its optional
variant Optional[T], as in our motivating example. Finally, the fact that most
commits have statically detectable type errors calls for more developer awareness
and better integration of gradual type checkers into the development process.
In summary, this chapter makes the following contributions:

• A comprehensive study of the evolution of type annotations and type errors
in real-world Python code.

• Findings that may impact developers and teachers, as well as future work
on tools and techniques for developers.

• A dataset of type annotation-related code changes to be used in future
work [76], e.g., on mining and learning from these changes.

4.2 Methodology

This section discusses the methodology we use to address our research questions.

4.2.1 Extracting and Studying Type Annotations

The core concept of our study are type annotations:

Definition 4.1 (Type annotation)
A type annotation is a tuple tann = (t, n, k, l), where t is a type, n is the name of
an annotated program element, k is the kind of the annotated program element,
and l is the code location of the type annotation.

In line with the type annotations specified by the Python language, we consider
three kinds k of program elements: argument types, return types, and variable
types. The code location l is specified by a file path and a line number. As
an example, consider the code in Figure 5.1a. The type annotation for the

94 4 | The evolution of type annotations in Python: an empirical study

annotated parameter type is (t, n, k, l), where t is float, n is x, k is “argument
type”, and l is line 1 of the corresponding file.
Given the type annotations in a code base, we compute the following notion

of coverage, which indicates how many of all program elements that could be
annotated are indeed annotated:

Definition 4.2 (Type annotation coverage)
Given a code base B, the type annotation coverage for a kind ktar get of program
elements is:

covann =
|{(t, n, k, l) ∈ B | k = ktar get}|

|{All program elements of kind ktar get}|

For example, consider a code base that consists only of the function in Fig-
ure 5.1b. The type annotation coverage for argument types is 50%, because one
out of two arguments is annotated, whereas the type annotation coverage for
return types is 100%.
To extract both present and missing type annotations, we perform an AST-

based static analysis of each Python file (.py) and each Python stub file (.pyi) in a
version of a project. The analysis visits each node that corresponds to a possibly
type-annotated program element and, if an annotation is found, extracts the
corresponding tuple. We focus on type annotations in the type definition syntax
added in Python 3.5 (PEP 484) and Python 3.6 (PEP 526). In contrast, we do not
consider types described in informal type comments, because type comments
are only partially supported by tools and because our preliminary results found
type comments to occur clearly less often than annotations in proper syntax.
The analysis of Python files and Python stub files is implemented on top of the
LibCST and Typed AST libraries, respectively.29

4.2.2 Extracting and Studying Type Annotation Changes

As the primary focus of our work is to study the evolution of type annotations,
we extract annotations across the history of a project and relate them to each
other.

29https://github.com/Instagram/LibCST and
https://github.com/python/typed_ast

4.2 | Methodology 95

https://github.com/Instagram/LibCST
https://github.com/python/typed_ast

Definition 4.3 (Type annotation change)
A type annotation change is a tuple tchange = (told

ann, tnew
ann , c, d), where told

ann and tnew
ann

are the type annotations before and after a code change, respectively, c is the kind
of code change, and d is the date of the code change.

We consider three kinds of code changes: inserting, updating, and removing
a type annotation. In a type annotation change that inserts or removes an anno-
tation, the old or new annotation is undefined, respectively, which we represent
with _. For example, the commits in Figure 4.1 involve four type annotation
changes: an update of the argument type x, a newly inserted annotation for
the return type of f, a newly inserted annotation for the variable sum, and an
update of the return type of f.
To study the evolution of individual type annotations, we combine multiple

type annotation changes into a history:

Definition 4.4 (Type annotation history)
A type annotation history is a sequence [t1

change, ..., tm
change] of type annotation

changes, where:

• the t1
change has code change kind c =“insert”,

• there is at most one type annotation change with c =“remove” and if it exists,
then it is tm

change,

• the kind k of program element is the same in all type annotation changes,
and

• for consecutive type annotation changes, the new type annotation tnew
ann of the

first change is the same as the old type annotation told
ann of the second change.

For example, consider an extended version of the example in Figure 4.1
where the code change in the figure is preceded by a commit that adds the
functionwithout any type annotations and followed by a commit that removes the
annotation of the x argument again. This evolution of the argument type would
be represented as a type annotation history with three type annotation changes,
which describe how the annotation of argument x gets inserted, updated, and
removed, respectively.

96 4 | The evolution of type annotations in Python: an empirical study

Algorithmus 4.1 Extract type annotation changes from commits.
Input: Sequence C of commits
Output: Set T of type annotation changes (old and new type pairs)
1: T ← ;
2: for commit c in C do
3: Told ← type annotations in code before commit c
4: Tnew← type annotations in code after commit c
5: d ← date of c
6: T ′← ;
7: for (told, tnew) ∈ Told × Tnew do
8: if ∃ hunk h in c where told in oldLineRange(h)
9: and tnew in newLineRange(h) then
10: if told and tnew have same kind k
11: and same name n then
12: Add (told, tnew, “update”, d) to T ′

13: end if
14: end if
15: end for
16: T ′← ensureSingleMatch(T ′)
17: for tnew not yet added to T ′ do
18: Add (_, tnew, “insert”, d) to T ′

19: end for
20: for told not yet added to T ′ do
21: Add (told,_, “remove”, d) to T ′

22: end for
23: T ← T ∪ T ′

24: end for

We compute type annotation changes and type annotation histories by com-
bining the annotations extracted by our AST-based analysis across the commit
history of a repository. Tracking annotations across histories is a non-trivial
challenge, e.g., because line numbers change due to removed and added code,
or because developers may modify multiple type annotations in a single commit.
Algorithm 4.1 summarizes our approach for addressing this challenge. The

algorithm iterates through a sequence of commits and extracts a set of type
annotation changes from it. At first, lines 3 and 4 extract the type annotations
from the old and the new version of a commit, respectively. Then, the algorithm

4.2 | Methodology 97

compares these annotations based on their code location, the kind of the an-
notated element, and the name of the annotated element. The goal is to find
matches, i.e., pairs of an existing annotation and a revised version of it, and
that hence, should be combined into a type annotation update. To this end,
the algorithm builds upon the concept of hunks, i.e., consecutive lines that are
changed together. Concretely, lines 8 to 16 check whether a pair of an old and
a new type annotation fit into the line range of a hunk in the commit, and if
so, compares the kind and name of the annotated program element. Because
we collect the life of type annotations from insertion to removing (if removed),
the ensureSingleMatch function checks if it is an update of a program element
already collected or if it is a different program element without creating dupli-
cate elements. After finding pairs of type annotations that are changed in the
commit, lines 17 to 22 consider annotations that exist only in the old or only in
the new version of the commit. These annotations are added to the set of type
annotation changes as “inserted” and “removed” annotations, respectively.
Because Algorithm 4.1 is heuristic, we validate the accuracy of the type

annotation changes it extracts by manually inspecting 85 histories with a total of
204 type annotation code changes. We randomly sample these type annotation
histories based on three categories: (i) annotations that are never updated and
still present in the last analyzed version of the project, (ii) annotations that
are never updated but removed at some point during the commit history, (iii)
annotations that are updated multiple times. For each sampled history, we
carefully inspect the commits involving the annotation and establish a ground
truth history. We find that 90.1% of the automatically extracted histories match
the manually established ground truth, i.e., the vast majority of histories is
correctly extracted. The main reasons for (partially) incorrect type annotation
histories are mismatched annotations due to multiple identifiers with the same
name in the same file, and renamed or deleted files that our analysis does not
track.

4.2.3 Gathering and Studying of Type Errors

We study the evolution of type errors by running a gradual type checker on
different commits in the history of a project. There are several popular type

98 4 | The evolution of type annotations in Python: an empirical study

checkers for Python, e.g., pyre, mypy, and pytype. For our study, we focus on
pyre, because it is industrially used, e.g., at Facebook, and could successfully
analyze the studied projects.
The kinds of type errors reported by pyre and other gradual type checkers

fall into two categories. One category of errors are those caused by missing
dependencies, e.g., when the type checker cannot find an imported class or
cannot resolve a reference to a type. These errors are unlikely to occur when a
type checker is used by the project developers, assuming that the developers
create a proper configuration that resolves all external dependencies. In contrast,
eliminating these errors in a large-scale study is difficult because resolving all
dependencies and configuring the type checker to find the dependencies is
non-trivial. The second category of errors are the actual type errors, which
result from inconsistencies between inferred and annotated types of values and
the uses of these values. For example, these errors occur because a function
argument is incompatible with the declared parameter type or because a method
overrides another method with an incompatible type signature. We focus our
study on the second category of errors, and unless otherwise mentioned, ignore
the first category, providing a realistic view of what errors the developers of a
project would see when using a type checker.

4.2.4 Selection of Projects to Study

As subjects for our study we select a wide range of open-source projects based
on their creation time and their popularity. At first, we gather the list of all
Python projects at GitHub via the GitHub API.30 We group the projects by their
creation date, considering projects created in the years 2010 to 2019, into ten
groups that each cover one year. Then, we sort the projects in each group by
their number of stars and select the top-1000 per group, which yields a total of
10,000 projects to study. The rationale for first grouping and then sampling is to
avoid biasing our study toward projects created in a particular time frame, e.g.,
mostly old projects. Removing projects that we could not clone, e.g., because
they became unavailable since the beginning of our study, the total number of
analyzed repositories is 9,655.

30https://api.github.com/search/

4.2 | Methodology 99

https://api.github.com/search/

4.3 Results

This section presents the results we obtain when addressing our four research
questions. Before going through the research questions, we give an overview
of the analyzed data. In total, the study involves 1,123,393 commits in 9,655
repositories. Our analysis extracts 1,414,936 type annotation changes from
these commits. These type annotation changes correspond to 61,861 commits
and 668 repositories that have at least one type annotation change. Our results
are for these 668 projects. As general statistics, the number of commits with at
least one type annotation grows every year. An early adoption started already in
2015, where 3.8% of the commits contain at least one type annotation and this
number of commits grows every year until reaching 10.9% in 2021.

4.3.1 RQ1: Ecosystem-level Evolution of Type Annotations

To understand whether type annotations are becoming more common in the
Python ecosystem as a whole, we analyze the evolution across all studied projects.
The goal is to understand trends in the ecosystem, e.g., caused by the introduction
of new programming language features or tools. We perform this analysis from
two points of view. First, we analyze the evolution of the absolute number of type
annotations. Second, we measure the evolution of type annotation coverage.

How is the total number of type annotations evolving?

We measure the overall number of type annotations and the overall number
of lines of code between 2015 and 2021. Figure 4.2 shows the results, taking
a snapshot of each project on October 1 of each year. The main observation
is that both the absolute number of type annotations and the number of type
annotations per line of code are steadily increasing in a roughly linear manner
since 2017. In 2021, there are around 50.1 annotations per 1,000 lines of code.
To better understand the relative importance of annotations provided in

regular Python files (.py) and Python stub files (.pyi), Figure 4.2 distinguishes
between them. It shows that the vast majority, e.g., 99.1% of all annotations
present in 2021, are provided in regular Python files. A manual inspection of
20 stub files sampled from 13 projects shows that most annotations provided in

100 4 | The evolution of type annotations in Python: an empirical study

2015 2016 2017 2018 2019 2020 2021
Year

0

200000

400000

600000

800000
Ty

pe
 a

nn
ot

at
io

ns

0

10

20

30

40

50

Ty
pe

 a
nn

ot
at

io
ns

 p
er

 1
00

0
Lo

C

Type annotations (left)
STUB annotations (left)
Type annotations per 1000 LoC (right)

Figure 4.2: Evolution of type annotations across all projects.

stub files are about APIs of external libraries (17 out of the 20 files), for example,
native libraries accessed via Python’s native bindings. Two of the remaining
three files are automatically generated. Given the relatively low number of
annotations in stub files and their focus on external libraries, the remainder of
the study considers only annotations in regular Python files.

Summary: Type annotations are getting more and more popular, with an
increase of about 15 type annotation per 1,000 line of code after 2017 and
reaching 50.1 annotations per 1,000 lines of code in 2021.

How is the type annotation coverage evolving?

This question is important to understand how much of the available “annotation
potential” developers are currently using. Out of all 9,655 projects we study, only
668 (7%) use type annotations at all. That is, six years after the introduction of
type annotations into the language, the large majority of projects is not yet using
this feature. Figure 4.3 takes a detailed look into those 668 projects that use

4.3 | Results 101

2015
2016

2017
2018

2019
2020

2021

Year

0

2

4

6

8

10

Ty
pe

 a
nn

ot
at

io
n

co
ve

ra
ge

Function arguments
Function returns
Variable assignments

Figure 4.3: Evolution of program elements with and without type annotations.

type annotations. The figure shows the type annotation coverage for function
arguments, return values, and variables on October 1 of each year. The results
allow for several observations. First, the type annotation coverage is steadily
increasing. Second, developers prefer to annotate function argument types and
return types, but focus less on variable types. Third, despite the clear upward
trend, the type annotation coverage is still relatively low, with an average of
around 8% for function arguments and return values.
To put the type annotation coverage in perspective, we consider a project

known for its heavy use of type annotations: mypy31, which is one of the gradual
type checkers for Python. This project has a type annotation coverage of 62.2%
for parameter types, 94.9% for return types, and 23.4% for variable types.
A manual inspection shows two main reasons for leaving program elements
unannotated. First, the developers do not annotate self parameters, as self
always has the type of the current class, and hence, does not really need a
type annotation. Second, a significant number of unannotated local variables

31https://github.com/python/mypy

102 4 | The evolution of type annotations in Python: an empirical study

https://github.com/python/mypy

Regular annotation

0 2 4 6 8
Time steps during version

history of facebookresearch-pytext

0

10000

20000

30000

40000

50000

0

2000

4000

6000

Lines of code (left)
Type annotations (right)

Type sprint

0 2 4 6 8
Time steps during version

history of deepinsight-insightface

0

10000

20000

30000

0

10

20

30

Lines of code (left)
Type annotations (right)

Occasional use

0 2 4 6 8
Time steps during version
history of hhatto-autopep8

0

5000

10000

15000

0

5

10

15

20

Lines of code (left)
Type annotations (right)

Figure 4.4: Per-project evolution of three representative projects.

have types that can be easily inferred by a gradual type checker, e.g., because
a variable is assigned the result of a constructor call or the variable is assigned
an annotated variable. Omitting such annotations fits the philosophy behind
gradual typing, i.e., to annotate types when it is helpful without cluttering the
code with unnecessary annotations.

4.3 | Results 103

Summary: Type annotations are not yet the norm, with less than 10% of
all possible code elements being currently annotated, but there is a clear
upward trend. Function arguments and return types are annotated more
commonly than variables.

4.3.2 RQ2: Project-level Evolution of Type Annotations

After considering the Python ecosystem as a whole in RQ1, we now study the
evolution of type annotations within individual projects. To this end, we measure
how many type annotations a project has at different points during its lifetime,
where lifetime means all commits from creating the project until the end of
our measurement period (end of 2021). Putting the absolute number of type
annotations in perspective, we also measure the number of lines of code at each
point during the project lifetime. A commonality of almost all studied projects
is that the number of type annotations is rarely decreasing, but instead grows
continuously, i.e., once annotations are added, developers rarely remove them.
By inspecting the evolution of type annotations of various projects, we identify

three common evolution patterns, illustrated in Figure 4.4 with three representa-
tive projects. For each project, the plot shows how the code size and the number
of type annotations have evolved throughout the project’s history.

• Regular annotation. Some projects, such as facebookresearch-pytext,32

have adopted type annotations throughout their entire history and reg-
ularly add annotations as the project is growing. The typical evolution
pattern of these projects is that the number of type annotations is growing
at roughly the same rate as the overall code size. As can be observed by
comparing the absolute numbers of lines of code (left axis in Figure 4.4)
and type annotations (right axis), such projects often have significantly
more type annotations than the average project. For the specific example,
there are about 100 annotations per 1,000 lines of code, whereas the
average project reaches, even in 2021, only about 30 annotations per
1,000 lines of code (Figure 4.2).

32https://github.com/facebookresearch/pytext

104 4 | The evolution of type annotations in Python: an empirical study

https://github.com/facebookresearch/pytext

Algorithmus 4.2 Determine project-level evolution pattern.
Input: Project P
Output: Evolution pattern of P

Divide P into 10 time steps of equal number of commits
1: P.annotations← Number of annotations for each time step
2: P.slope← Annotation evolution slope for each time step
3: if max(P.annotations)< 15 or P.slope.count(0.0)> 8 then
4: return “Occasional use”
5: else if P.slope.count(0.0)>= 4 then
6: return “Type sprints”
7: else if Average(P.slope)>= 0 then
8: return “Regular annotators”
9: else
10: return “Other”
11: end if

• Type sprints. Some other projects, e.g., deepinsight-insightface,33 have
invested into type annotations during a focused, sprint-like effort, where
many annotations are added at once, but otherwise do not regularly add
annotations. A variant of this pattern is a step-like curve of the number
of type annotations, i.e., projects that add annotations in multiple yet
non-continuous efforts.

• Occasional use. Some projects, such as hhatto-autopep8,34, have only a
small number of annotations, typically added in a single or very few files.
This kind of project is included into the study because we consider all
projects with at least one type annotation.

To measure the prevalence of these three patterns across all studied projects,
Algorithm 4.2 heuristically determines whether a project fits any of the patterns.
The algorithm divides the commit history of a project into ten equally sized
steps, and it then checks the number of annotations present at each step and
the slope from the previous to the current time step. For example, if the average
slope across all time steps is positive, then the algorithm classifies the project as
“Regular annotation”, whereas a project with four or more time steps that do not

33https://github.com/deepinsight/insightface
34https://github.com/hhatto/autopep8

4.3 | Results 105

https://github.com/deepinsight/insightface
https://github.com/hhatto/autopep8

add any annotation is classified as “Occasional use”. In the algorithm, P.slope

refers to the list of slopes observed at different time steps, and P.slope(0.0) checks
how many of these slope values are equal to zero. We validate Algorithm 4.2 in
three steps. First, we generate the evolution plots of all studied projects. Second,
we manually inspected 35 randomly selected plots and, looking at the curve,
manually label each of them. Third, we run Algorithm 4.2 and compare the
labels produced by the algorithm with our manual labels. During this validation,
the algorithmically produced labels all match our manual labeling.
Running the algorithm across all 668 projects shows that 44.4% perform

“Regular annotation”, 28.1% use “Type sprints”, and 25.4% are “Occasional use”.
The remaining 2.1% are “Other”, i.e., their evolution does not fit any of the
three patterns.
We also study the relation between the patterns and the characteristics of the

project, such as the number of stars and contributors. While most characteristics
are independent of a project’s evolution pattern, we find a relationship with the
number of contributors. “Regular annotation” projects have an average of 62
contributors, projects using “Type sprints” have 45 contributors, and projects
with “occasional use” have only 25 contributors, on average. These numbers
show that regularly adding type annotations is practice followed particularly
in large repositories with a more solid organization, presumably because type
annotations help coordinate between a large number of developers.

Summary: Most projects follow one of three evolution patterns when
adding type annotations: “regular annotation”, “type sprints”, and “occa-
sional use”. Projects with more contributors tend to use “regular annotation”,
whereas projects with few contributors tend to follow “occasional use”.

4.3.3 RQ3: Evolution of Individual Type Annotations

The following studies how individual type annotations evolve, which allows us to
better understand how developers insert, modify, and remove type annotations.

106 4 | The evolution of type annotations in Python: an empirical study

0 20 40 60 80 100
Percentage of annotation-related lines among

all inserted, removed and changed lines

102

103

104
Nu

m
be

r o
f c

om
m

its
 (l

og
 sc

al
e)

Figure 4.5: Percentage of annotation-related, edited lines among all edited lines.

When do developers edit types?

Since type annotations are optional in Python, developers can freely choose when
to add or edit them. In particular, a developer can add new type annotations
along with other code, e.g., along with a newly added function, or in a separate
step later on, e.g., as part of a code improvement session. To understand when
developers insert or modify types in a code base, we analyze all commits in
the dataset that affect at least one type annotation. For each such commit, we
compute how many of all lines edit a type annotation. The resulting value is a
percentage, where 100% means that the commit is only to edit type annotations,
and a value closer to 0% means that more other code is edited alongside the
type annotation edit.
The results are shown in Figure 4.5. We see a bi-modal distribution, where

the majority of commits edit a significant number of other lines in addition to
editing type annotations. At the same time, there are a non-negligible number
of commits that exclusively edit type annotations, showing that developers at
least sometimes specifically focus on editing type annotations.

4.3 | Results 107

(a) Commit 1.

def pdist2(X: torch.Tensor,
Z: torch.Tensor = None,
order: PDist2Order =

PDist2Order.d_second)
-> torch.Tensor:

(b) Commit 2.

def pdist2(X,
Z = None,
order = PDist2Order.d_second):

type: (torch.Tensor, torch.Tensor,
PDist2Order) -> torch.Tensor

Figure 4.6: Example of removing a type annotation.

Summary: Most type annotations are edited alongside other code, but
developers also occasionally (1.3% of all type-editing commits) work on the
type annotations only.

How long do type annotations remain in a code base?

Answering this question helps understand whether adding type annotations
is a long-term investment. We address the question in two ways. At first, we
study how many of all ever added type annotations are still present in the latest
version of the projects. To this end, we compute for each repository the number
of type annotation changes that insert an annotation. In addition, we analyze
the latest version of each repository, cloned on March 7, 2022, and compute how
many type annotations it contains. In absolute values, 70.4% of all annotations
“survive” until the latest version of a repository. For some projects, shown in the
upper-right corner of the figure, all ever added annotations are still present in
the latest version.
Second, we consider all type annotation histories in the dataset where the

last change is a commit that removes the annotation. We compute the lifetime
of each such annotation as the difference between the first and the last date in
the history. In total, we find that 29.6% of all type annotations eventually get
removed. We analyze in detail the removed type annotations. Their average
lifetime is 160 days, showing that even annotations that get removed remain in
the code for a while. An example is shown in Figure 4.6, where the types are

108 4 | The evolution of type annotations in Python: an empirical study

removed from the source code and saved in a comment.35 The commit messages
says that the developers are adding support for Python 2.7, which does not
support the type annotation syntax yet. We inspect a random sample of 25 of
all removed annotations and classify them into three categories. We find that in
48% of the cases the entire files are removed or renamed, in 40% of the cases
the program element is removed or renamed, and in 12% of cases types are
explicitly removed, e.g., for supporting Python 2 or to simplify the code as shown
in Figure 4.6. As a result, we can affirm that type annotations are a long-term
investment because only in very few cases types are explicitly removed again.

Summary: 70.4% of all ever inserted type annotations are still present
in the latest version of a repository, and those type annotations that get
removed at some point “live” for an average of 126 days.

(How) do type annotations change?

Once type annotations are added, developers may modify them, e.g., to fix a
wrong annotation or because the annotated code is evolving. In this research
question we do not consider types that are removed. We study type annotation
changes by, at first, investigating how often type annotations are updated at
all. To this end, we analyze all extracted type annotation histories and compute
how many updates of a type annotation they contain.
Figure 4.7 shows how many type annotations we find that are updated a

specific number of times. The plot does not show the vast majority (90.1%) of all
type annotations that are never updated. Overall, we count 139,586 annotation
updates, with an average of 1.8 updates for each type annotation that gets
updated at least once. The maximum number of observed updates is 25, which
is an outlier though. Out of those annotations that get updated at all, most are
updated five times or less. Figure 4.8 shows an example. In this case the type
annotation is updated to Sequence,36, and later to the user type ModelField.37

35https://github.com/erikwijmans/Pointnet2_PyTorch/commit/a89c4d1
36https://github.com/tiangolo/fastapi/commit/c20c9d8
37https://github.com/tiangolo/fastapi/commit/f7b7ed0

4.3 | Results 109

https://github.com/erikwijmans/Pointnet2_PyTorch/commit/114c62efce4478ea816dd1429f6f0ce7da89c4d1#diff-6150c4beaf1c7dbe30fd943a174239b5e3ee460cd4a512cfab5dd5618d4ba758R9
https://github.com/tiangolo/fastapi/commit/0e19c24014c96e241bd73bede2805e21fc20c9d8#diff-aef3dac481b68359f4edd6974fa3a047cfde595254a4567a560cebc9ccb0673fL239
https://github.com/tiangolo/fastapi/commit/ab2b86fe2ce8fe15e91aaec179438e24ff7b7ed0#diff-aef3dac481b68359f4edd6974fa3a047cfde595254a4567a560cebc9ccb0673fL509

0 5 10 15 20 25
Number of changes for a type annotation

100

101

102

103

104

105

Ty
pe

 a
nn

ot
at

io
ns

 (l
og

 sc
al

e)

Figure 4.7: Number of times that the same type annotation is updated by devel-
opers. Not shown are the 90.1% of all type annotations with zero
updates.

To better understand how annotations that get updated evolve, we analyze
which kind of type annotation updates are most common. Figure 4.9 shows
the results of this analysis, where the three plots show the five most commonly
observed updates for argument types, return types, and variable types, respec-
tively. We show all types that are part of the Python language and its standard
library as-is, e.g., str and Optional[int], and abstract all user-defined types
into UserType. The results allow for two observations. First, many type annota-
tion updates involve custom types. Second, many updates affect optional types,
e.g., changing str to Optional[str]. In total, we count 14,750 type annotation
updates involving optional types. A manual inspection of some of these updates
shows that developers easily get confused about whether a parameter is optional
or whether a variable should be immediately initialized. Figure 4.10 shows an
example, where the code on the left is type-incorrect, which the developer then
fixed.38

38https://github.com/gogcom/galaxy-integrations-python-api/commit/18f6cd7

110 4 | The evolution of type annotations in Python: an empirical study

https://github.com/gogcom/galaxy-integrations-python-api/commit/bc7d1c291487656601926b405af6bb3c818f6cd7#diff-5b10313acbab390bf8b9420457136143db9f0ed157922779d44f574809bf6451R14

(a) Commit 1.

def request_params_to_args(
required_params: List[Field], ...

) -> Tuple[Dict[str, Any], List[ErrorWrapper]]:

(b) Commit 2.

def request_params_to_args(
required_params: Sequence[Field], ...

) -> Tuple[Dict[str, Any], List[ErrorWrapper]]:

(c) Commit 3.

def request_params_to_args(
required_params: Sequence[ModelField], ...

) -> Tuple[Dict[str, Any], List[ErrorWrapper]]:

Figure 4.8: Example of a type annotation updated multiple times.

Summary: Most type annotations (90.1%) never get updated. For those
that get updated, a frequent update pattern involves custom and optional
types, which seems a common source of confusion.

4.3.4 RQ4: Type Errors vs. Type Annotations

In this last research question, we inspect the number of type errors and their
relationship with type annotations. We divide this analysis into three parts. First,
we compute how many type errors are in these repositories. Second, we check if
there is a correlation between the number of type errors and type annotations.
Third, we analyze if insertions of type annotations increase the number of type
errors. These three parts are performed on all the 668 projects that have at least
one annotation.

How common are type errors?

This research question is important to understand what value gradual type
checkers could add to real-world Python projects and whether today’s developers

4.3 | Results 111

U
se

rT
y
p
e
 -

>
 U

se
rT

y
p
e

U
se

rT
y
p
e
 -

>
 s

tr

st
r

->
 U

se
rT

y
p
e

st
r

->
 O

p
ti

o
n
a
l
[s

tr
]

A
n
y
 -

>
 U

se
rT

y
p
e

Type changes in function arguments.

100

102

104

O
cc

u
rr

e
n
ce

s
(l

o
g
 s

ca
le

)

U
se

rT
y
p
e
 -

>
 U

se
rT

y
p
e

N
o
n
e
 -

>
 U

se
rT

y
p
e

U
se

rT
y
p
e
 -

>
 N

o
n
e

U
se

rT
y
p
e
 -

>
 s

tr

st
r

->
 U

se
rT

y
p
e

Type changes in function return.

100

102

104

O
cc

u
rr

e
n
ce

s
(l

o
g
 s

ca
le

)

U
se

rT
y
p

e
 -

>
 U

se
rT

y
p

e

fl
o
a
t

->
 d

e
ci

m
a
l

st
r

->
 O

p
ti

o
n
a
l
[s

tr
]

st
r

->
 U

se
rT

y
p

e

in
t

->
 O

p
ti

o
n
a
l
[i

n
t]

Type changes in variable assignment.

100

102

104

O
cc

u
rr

e
n
ce

s
(l

o
g
 s

ca
le

)

Figure 4.9: Most common kinds of type annotation changes.

112 4 | The evolution of type annotations in Python: an empirical study

(a) Commit 1.

class LicenseInfo():
license_type: str
owner: str = None

(b) Commit 2.

class LicenseInfo():
license_type: str
owner: Optional[str] = None

Figure 4.10: Example of adding a wrong type annotation and then updating it
with Optional type.

are using these tools. For each analyzed project, we run the type checker on each
commit in the project’s history and then count the number of non-dependency-
related type errors (Section 4.2.3). We find that 78.3% of the analyzed snapshots
have at least one type error. On average, there are 6 type errors per 1000
lines of code. This result indicates that type checking is not yet part of the
typical development routine, calling for better tool support and more developer
awareness.
To better understand the kinds of detected type errors, we analyze what

kinds of errors are most common in the most recent versions of the studied
projects. We find a total of 90,871 type errors and that a few kinds of errors
occur repeatedly, in particular the error incompatible variable types (17.6%) and
incompatible parameter types (12.6%).39

Summary: Most projects have statically detectable type errors, and type
errors seem to not prevent developers from committing code. A few kinds
of mistakes account for most type errors.

How does the number of type errors depend on the number of type
annotations?

One major goal of introducing type annotations is to statically detect otherwise
missed type errors. The reason is that most gradual type checkers, including
the pyre tool used here, run additional type checks if more annotations are
present. Even if these tools are not perfect, several studies proved the usefulness

39https://pyre-check.org/docs/errors/#error-codes

4.3 | Results 113

https://pyre-check.org/docs/errors/#error-codes

100 101 102 103 104

Type annotations (log scale)

100

101

102

103
Nu

m
be

r o
f t

yp
e

er
ro

rs
 (l

og
 sc

al
e)

Figure 4.11: Relation between type errors and type annotations in a project
(correlation: 0.704).

of type checkers [65, 121], so we decide to use pyre for this research question.
To check if type annotations indeed provide this benefit in practice, we compute
the correlation between the number of type errors and the number of type
annotations in each project. Figure 4.11 visualizes the relation between these
two measures, showing that there is a significant correlation (Pearson coefficient
of 0.704) between them. We conclude that adding type annotations is only the
first step toward improving type correctness, and the developers also need to
introduce type checking into their developing routine.

Summary: Adding type annotations positively correlates with an increase
in the number of detected type errors (correlation: 0.704). Developers
should introduce type checks in their developing routine to find and fix such
errors early on.

114 4 | The evolution of type annotations in Python: an empirical study

How does the number of type errors evolve when type annotations evolve?

The following aims to understand how evolving the type annotations of a project
impacts the statically detectable type errors. For this purpose, we extract from
all type annotation changes only those where all lines changed in the commit
correspond to only adding type annotations, which we call pure commits. Pure
commits are interesting because they allow us to study in isolation the effect on
the code base of adding type annotations.
For each pure commit, we compare the number of type errors before and after

the type annotation change. We find that 81 commits introduce more errors,
34 commits reduce the type errors and 319 commits keep the same number of
errors. While in most cases (319) the number of type errors remains the same,
the kind of pure commit has a significant impact on incrementing the number
of errors.

Summary: Adding type annotations can introduce new type errors, so this
process should come with the usage of type checkers.

4.4 Discussion

Implications for developers and project managers. The overall trend is that
type annotations are increasingly popular (RQ 1), suggesting that developers
should pick up the habit of adding annotations as they write code. Regularly
adding annotations is common especially for projects with many contributors
(RQ 2). Adding to benefits reported by others [65, 87, 121], our results provide
empirical motivation for adding type annotations, such as the fact that more
annotations help find more type errors (RQ 4) and the observation that most
annotations remain in the code for a long time (RQ 3). We also pinpoint specific
update patterns for individual annotations, which could help developers to avoid
recurring mistakes, e.g., related to optional types (RQ 3). Finally, we show that
developers do not need to annotate every program, because even in projects
with heavy use of annotations, self-explanatory parameters and variables often
remain unannotated (RQ 1).

4.4 | Discussion 115

Implications for researchers and tool builders. Even though type annota-
tions are being used more and more, the large majority of code elements that
could be annotated currently remains unannotated (RQ 1). While probably
not all code in all projects needs type annotations, we see a huge potential for
techniques that automate the process of adding types into an existing code base,
such as neural type prediction models [4, 92, 157, 203]. Another promising
direction is to improve the integration of type checking into the development
process. The fact that many commits contain type errors found by a type checker
(RQ 4), but nevertheless are committed, shows that type checking currently is
not yet standard. Better understanding the reasons for this phenomenon will be
interesting future work.

Threats to validity. Our selection of projects is based on popularity and the
projects’ creation time. Another selection strategy, e.g., based on application
domains, might give other results. We focus on popular projects because they
overall have a higher impact and aremore likely to represent serious development
efforts than, e.g., small toy projects or student assignments. To study type errors,
we use a single type checker, pyre, and other type checkers may give other type
errors. See Rak-amnouykit et al. [211] for a discussion of the subtle differences
between the type systems behind pyre and mypy. Some of our results are based
on manual inspection and heuristic algorithms, which likely are imperfect. To
mitigate this threat, we carefully check all results and make them available as a
reference for future work. Finally, our study focuses on a single language, Python,
and we cannot claim that our results will generalize to others. Comparing the
evolution of type annotations across different languages will be interesting
future work.

116 4 | The evolution of type annotations in Python: an empirical study

4.5 Concluding Remarks

This chapter presents a large-scale empirical study of the characteristics and
evolution of type annotations and type errors in Python. Our methodology
statically analyzes individual commits of projects, extracts type annotations,
combines them into histories that show the evolution of the annotations, and
type checks different commits of projects. We extract 1.4 million type annotation
changes from 9,655 repositories. Our results show that type annotations are
clearly gaining traction, yet the large majority of code elements that could be
annotated currently remains unannotated. While probably not all code in all
projects needs type annotations, we see a huge potential for techniques that
automate the process of adding types into an existing code base, such as neural
type prediction models [4, 92, 157, 203]. Finally, many developers seem to
not regularly check their code for statically detectable type errors, or if they
do, commit the code despite such errors. We recommend to increase developer
awareness and to better integrate gradual type checkers into the development
process to alleviate this situation.

4.5 | Concluding Remarks 117

Ch
ap
te
r 5

PyTy: Repairing Static Type Errors
in Python

Gradual typing enables developers to annotate types of their own choosing,
offering a flexible middle ground between no type annotations and a fully stati-
cally typed language. As more and more code bases get type-annotated, static
type checkers detect an increasingly large number of type errors. Unfortunately,
fixing these errors requires manual effort, hampering the adoption of gradual
typing in practice. This chapter presents PyTy, an automated program repair
approach targeted at statically detectable type errors in Python. The problem of
repairing type errors deserves specific attention because it exposes particular
repair patterns, offers a warning message with hints about where and how to
apply a fix, and because gradual type checking serves as an automatic way to
validate fixes. We addresses this problem through three contributions: (i) an
empirical study that investigates how developers fix Python type errors, showing
a diverse set of fixing strategies with some recurring patterns; (ii) an approach
to automatically extract type error fixes, which enables us to create a dataset of
2,766 error-fix pairs from 176 GitHub repositories, named PyTyDefects; (iii) the
first learning-based repair technique for fixing type errors in Python.

119

Motivated by the relative data scarcity of the problem, the neural model at the
core of PyTy is trained via cross-lingual transfer learning. Our evaluation shows
that PyTy offers fixes for ten frequent categories of type errors, successfully
addressing 85.4% of 281 real-world errors. This effectiveness outperforms state-
of-the-art large language models asked to repair type errors (by 2.1x) and
complements a previous technique aimed at type errors that manifest at runtime.
Finally, 20 out of 30 pull requests with PyTy-suggested fixes have been merged
by developers, showing the usefulness of PyTy in practice.

5.1 Introduction

Dynamically typed languages, such as Python and JavaScript, have become
very popular.40 One reason is their lightweight syntax, which does not require
developers to specify types for parameters, return values, or variables. Because
this flexibility may negatively affect the maintainability and robustness of code,
in 2015, Python adopted optional type annotations, enabling developers to
annotate types of their choosing.

5.1.1 Context

Since their introduction into the Python language, type annotations have been
getting increasingly popular [43]. To support developers, several automated
approaches for adding type annotations to existing code bases have been pro-
posed, e.g., TypeWriter [203], DeepTyper [92], Typilus [4], and work by Xu et
al. [278]. While adding type annotations is generally considered a step forward,
newly added annotations often reveal previously unnoticed type errors, which
can be easily detected with a static type checker. Unfortunately, developers
commonly lack the time to fix these errors [43], which hampers the usefulness
of gradual typing.
Figure 5.1 shows two real-world, statically detectable type errors along with

their fixes, as performed by developers. The error presented in Figure 5.1a
is caused by passing the arguments to a function in the wrong order [204],

40https://octoverse.github.com/#top-languages-over-the-years

120 5 | PyTy: Repairing Static Type Errors in Python

https://octoverse.github.com/#top-languages-over-the-years

def draw_texture_rectangle(
texture: Texture,
scale: float = 1):

...
draw_text_rectangle(scale, texture)

(a) Code with a type error.

def draw_texture_rectangle(
texture: Texture,
scale: float = 1):

...
draw_text_rectangle(texture, scale)

(b) Type error fixed by swapping
arguments.

def _decorate_async_function(
method: Callable,
method_name: str = None):

(c) Code with a type error.

def _decorate_async_function(
method: Callable,
method_name: Optional[str] = None):

(d) Type error fixed by adding an
Optional annotation.

Figure 5.1: Examples of type errors fixed by PyTy.

i.e., a kind of problem that in statically typed languages often can be pre-
vented by the type system. The developers fix the problem by swapping the
arguments.41 The error presented in Figure 5.1c is caused by annotating a
parameter to be a string, while at the same time, initializing it to None, which is
type-incompatible with str. To fix this error, the developer modifies the type
annotation to Optional[str].42 As illustrated by these examples, there may be
many ways of addressing different type errors in Python, and finding the right
fix for a given error is non-trivial.

5.1.2 Significance

Organizations with large Python code bases invest significant efforts toward
using type annotations and type checkers. For example, Google’s Python style
guide mentions that developers are “strongly encouraged to enable Python type
analysis” because “The type checker will convert many runtime errors to build-
time errors”.43 Likewise, Dropbox type-checked over four million lines of Python
in 2019, because “A type checker will find many subtle (and not so subtle) bugs.
A typical example is forgetting to handle a None value or some other special

41https://github.com/pythonarcade/arcade/commit/c6aL883
42https://github.com/awslabs/aws-lambda-powertools-python/3898e55
43https://google.github.io/styleguide/pyguide.html#2212-pros

5.1 | Introduction 121

https://github.com/pythonarcade/arcade/commit/29972977db9e56010cd8b2e533eaa001f77114cd#diff-0b06b8c0af34bc51343b33fd98332c989eb2322a2b3ca2afd113a14eda2cec6aL883
https://github.com/awslabs/aws-lambda-powertools-python/commit/5b87bb195fb154d2a112364a5d1d5c9513898e55#diff-ac2e7c32fce52e9e17243aafe7f69a62615e44d9d3a15dabd164d16b476dc5daL523
https://google.github.io/styleguide/pyguide.html#2212-pros

condition”.44 Finally, Meta “use[s] it extensively to maintain the codebases of
Facebook and Instagram”.45

To handle type errors in legacy code and type errors revealed by adding type
annotations to previously unannotated code, an automated technique to help
developers fix such errors would be desirable. However, despite the increasing
popularity of automated program repair (APR) [134], there currently is no APR
approach targeting static type errors in Python. Compared to repair scenarios
targeted by existing APR approaches, fixing type errors in Python differs in three
important ways, making the problem particularly amenable to automated repair.
First, type errors require specific fix patterns, which an approach specifically
targeting such errors can exploit. Second, when a gradual type checker reports
a type error, the report includes an error message that may offer hints about the
location and nature of the problem. Third, the gradual type checker also offers
an automatic oracle, which an APR technique can use to validate candidate fixes.

5.1.3 Approach

This chapter introduces PyTy, the first APR approach for static type errors in
Python. To guide the design of PyTy, we investigate in a preliminary study how
developers typically fix type errors. The study investigates (i) how repetitive
type errors and their fixes are, (ii) how difficult it is to localize the fix location,
and (iii) to what extent the error message provided by a type checker helps in
finding the fix. In short, the results show that there are recurring fix patterns,
but ambiguous rules for when to apply them, and that the locations and error
messages provided by the type checker are valuable information.
Based on the results of the preliminary study, we design PyTy as a data-

driven approach. This kind of approach requires a dataset for training and
evaluation. However, automatically collecting a large-scale dataset of type
error fixes is challenging because it requires identifying relevant commits and
isolating the type error fixes in these commits. We address these challenges
through an automated approach that combines gradual type checking and delta
debugging [284]. Using this approach, we obtain 2,766 real-world pairs of type

44https://dropbox.tech/application/our-journey-to-type-checking-4-million-lines-of-python
45https://developers.facebook.com/blog/post/2021/05/10/eli5-pyre-fast-error-flagging-python-

codebases/

122 5 | PyTy: Repairing Static Type Errors in Python

https://dropbox.tech/application/our-journey-to-type-checking-4-million-lines-of-python
https://developers.facebook.com/blog/post/2021/05/10/eli5-pyre-fast-error-flagging-python-codebases/
https://developers.facebook.com/blog/post/2021/05/10/eli5-pyre-fast-error-flagging-python-codebases/

errors and corresponding single-hunk fixes from 176 GitHub repositories. To
the best of our knowledge, our PyTyDefects dataset is the first of its kind.
The core of PyTy is a neural type error repair model. Motivated by the

relative data scarcity of the problem, we present a cross-lingual transfer learning
approach. Specifically, we base PyTy on the existing APR system TFix [19],
which has been trained to fix linter warnings in JavaScript code. By fine-tuning
the TFix model with PyTyDefects, we retain the knowledge learned from fixing
JavaScript code and apply it to fixing Python type errors. To ensure that every
fix suggested by PyTy indeed fixes the targeted type error, the approach checks
candidate fixes with a gradual type checker, and returns a fix only if it removes
the error.

5.1.4 Results

Our evaluation on a held-out subset of 281 type error fixes shows that PyTy finds
a fix that removes type errors for 85.4% of all errors. Moreover, 54.4% of the
predicted fixes exactly match the developer’s fix. Comparing PyTy with previous
work, we find that it clearly outperforms several state-of-the-art large language
models (text-davinci-003, gpt-3.5-turbo, and gpt-4) asked to repair type errors
(54.4% vs. 26.4% exact matches) and complements a technique aimed at type
errors that manifest at runtime [186]. As evidence of the usefulness of PyTy in
practice, 20 out of 30 GitHub pull requests with PyTy-suggested fixes have been
merged by the developers. Finally, we also validate the automatically gathered
PyTyDefects dataset underlying our approach, and find that almost all gathered
fixes are minimal and correct.

5.1.5 Contributions

In summary, the contributions of this chapter are:

• An empirical study of how developers fix type errors.

• A technique to extract type errors and corresponding fixes through a
combination of gradual type checking and delta debugging, which yields
the first dataset of its kind, with 2,766 type error-fix pairs from 176 GitHub
repositories.

5.1 | Introduction 123

• Cross-language transfer learning that uses amodel pre-trained on JavaScript
to repair type errors in Python.

• Empirical evidence of the effectiveness of the approach when being applied
to real-world type errors.

5.2 Background on Python Type Checkers

In 2015, Python introduced a syntax for type annotations. These annotations
are optional and not checked at runtime. The Python language also does not
define a static type system, but leaves type checking to third-party tools. In re-
sponse, the Python community has developed several type checkers that perform
gradual type checking [231], i.e., a form of type checking aimed at exposing
incompatibilities between the provided type annotations while allowing parts of
the program to remain unannotated. Popular type checkers include Pyre, Mypy,
Pytype, and Pyright.46 The type systems implemented by checkers differ, and
hence, different type checkers may reveal different type errors [211]. Concep-
tually, the approach described in this chapter is independent of a specific type
checker and could be adapted to any of the popular checkers. Our implementa-
tion builds upon Pyre because it is widely used, available as open-source, backed
by a major tech company, and has been the basis of recent work on studying
Python type annotation practices [43]. Pyre reports a wide range of type-related
problems, such as incompatible variable, parameter, and return types, uses of
unbound names, unsupported operands, and inconsistent method overrides. We
use Pyre’s default configuration, i.e., it runs only on functions that are at least
partially type-annotated. In the remainder of the chapter, we refer to Pyre using
the term type checker.

46https://realpython.com/python-type-checking/

124 5 | PyTy: Repairing Static Type Errors in Python

https://realpython.com/python-type-checking/

5.3 Preliminary Study

To guide important design decisions of our approach, we perform a preliminary
empirical study that investigates three questions (PQs):

PQ1 How repetitive are real-world type errors and type error fixes? Answering this
question is useful for deciding about the kind of technique, e.g., rule-based
vs. data-driven, to build for automatically repairing type errors.

PQ2 How difficult is identifying the fix location for a given type error? Answering
this question helps us decide how PyTy can effectively determine where in
the given code to fix a type error.

PQ3 How useful for fixing type errors are the error messages provided by a type
checker? Answering this question is useful to determine if and how a repair
technique will be able to benefit from error messages.

5.3.1 Data Collection

To address the above questions, we systematically study type error fixes in the
version histories of popular projects. We apply three strategies to select commits
with type error fixes. First, we search for GitHub issues that call for help in
fixing type errors. Second, we search for commits on GitHub via the keywords:
“type+fix”, “pyre” and “mypy” in Python repositories with more than 100 stars.
Third, we use a dataset extracted from the top 10,000 Python repositories [43],
which contains commits with edits related to inserting, removing, or updating a
type annotation.
After collecting the commits, we clone the repositories and run the type checker

before and after each commit. During our manual inspection, we observe that
some warnings and fixes are not useful for our study towards building an APR
tool, and hence, we remove (i) fixes that delete entire functions or files, without
actually fixing a type error47, (ii) import-related warnings, as they are often
due to libraries missing in the type checker’s search path, and (iii) fixes that
add comments # pyre-ignore or # type:ignore to suppress warnings from the

47E.g., https://github.com/vkbottle/vkbottle/commit/2bc36b6

5.3 | Preliminary Study 125

https://github.com/vkbottle/vkbottle/commit/2bc36b6d2e71e6a6d24765312cf786753201be01#diff-c4eef9f9c1a249a379aa69f4565090841aa8dabceb6bf557c7fe469a3bc05543L21

Remove code

Invalid type
Call error

Incompatible return type

Undefined attribute

Incompatible variable type

Undefined Type

Redundant Cast
Inconsistent override

Illegal annotation target

Incompatible parameter type

Unsupported operand

Modify function parameter value

Other

Modify isinstance call

Add none check

Create new variable

Operator change

Add return value

Modify variable type

Modify function return type

Remove type

Call other method

Casting

Modify attribute type

Remove reannotation

Modify function parameter type

 Modify function return value

Figure 5.2: Type errors (left) and related fix patterns (right), based on 125 type
error fixes collected in the preliminary study.

type checker. Overall, for the preliminary study, we collect 125 type error fixes
from 14 GitHub repositories.

5.3.2 Results

PQ1: Repetitiveness of Type Errors and Fixes

We analyze the most frequent classes of type errors fixed by developers, which
helps understand which errors concern developers the most, and hence, should
be the focus of an APR technique. Figure 5.2 (left) shows the distribution of the
most frequently fixed classes of type errors. We take the classes of type errors
from the Pyre documentation.48 The most frequent classes are incompatible
return, variable, and parameter types, which together account for 64.8% of the
dataset. For example, one such fix is for a function expected to return a str but

48https://pyre-check.org/docs/errors/

126 5 | PyTy: Repairing Static Type Errors in Python

https://pyre-check.org/docs/errors/

that actually returns int due to a statement return -1. The error is fixed by
changing the return statement to return "X".49

We also analyze the most frequent types involved in the fixes. We observe
that Python’s built-in types occur frequently, e.g., str (23.9%) and int (22.4%).
Also relatively frequent are types related to optional values, such as Optional
(9.3%) and None (5.6%), and other types from the typing library, e.g., Union
(7.1%).
We study how type errors are fixed by manually categorizing the error-fixing

code changes into 17 classes. This categorization was performed by one of
the authors based on grounded theory [69], i.e., we discovered and refined fix
patterns until they sufficiently covered the studied examples. Figure 5.2 (right)
shows the distribution of the identified fix patterns. Beyond the distribution, the
figure shows that there is no simple mapping from classes of type errors to fix
patterns. The most frequent relationships are Incompatible return type fixed with
the patternModify function return type (14.4%) and Incompatible parameter type
fixed with the pattern Modify function parameter type (13.6 %). However, the
same class of type error may also get addressed by applying several other fix
patterns.

Summary: PQ1 A few kinds of type errors account for most fixed errors,
and the fixes often involve Python’s built-in data types. The fixes expose
some recurring patterns, but only an ambiguous mapping from classes of
type errors to fix patterns.

PQ2: Difficulty of Identifying the Fix Location

To assess the difficulty of localizing where to fix type errors, we start by inves-
tigating how much code developers typically change to fix a type error. Based
on the categorization of fix patterns in Figure 5.2, we see that most fixes are
single-line edits, such as modifying a type annotation from one type to another,
changing an operator, removing a type annotation, or adding a cast. Next, we
study the location of the fixes (Figure 5.4a). More than half of the fixes happen

49https://github.com/TheAlgorithms/Python/commit/97b6ca2

5.3 | Preliminary Study 127

https://github.com/TheAlgorithms/Python/commit/97b6ca2#diff-66f650b3a498fb126465a4b809ccb5e16f7766c633fd1f14cb06761cb880e3ccL17

def is_valid_public_key_static(
local_private_key_str: str,

remote_public_key_str: str, prime:
int

) -> bool:
...

[Error message] Expected ‘int‘ for 1st
parameter but got ‘str‘.

if pow(remote_public_key_str, (prime - 1)
// 2, prime) == 1:

...

(a) Commit with a type error.

def is_valid_public_key_static(
local_private_key_str: str,
remote_public_key_str: int,
prime: int

) -> bool:
...

[Fix pattern] Modify function parameter
type.

if pow(remote_public_key_str, (prime -
1) // 2, prime) == 1:

...

(b) Commit that applies the “Use expected
type” pattern.

def get_model_for_finetuning(
previous_model_file: Optional[Union[Path,

Text]]
[Error message] Expected ’Optional[Text]’,

got ’Union[None, Path, Text]’
) -> Optional[Text]:

(c) Commit with a type error.

def get_model_for_finetuning(
previous_model_file: Optional[Union[

Path, Text]]
[Fix pattern] Modify function return type

.
) -> Optional[Union[Path, Text]]:

(d) Commit that applies the “Do not use
expected type” pattern.

Figure 5.3: Examples of fixing type errors based on error messages.

exactly in the line where the type error is reported. Other locations include the
function parameters, return annotations, and function callees (i.e., the functions
that are called).

Summary: PQ2 Most fixes of type errors affect only a single line of code,
which often is the line where the type checker reports the type error.

PQ3: Usefulness of Error Messages and Locations

Finally, we want to understand how useful the error messages provided by
a type checker are for fixing type errors. To this end, we extract from the
error message the kind of error, the types involved, and any hints about the
location and the fix. We classify an error message as correctly hinted if the
message contains the type that the developer uses to fix the error. Figure 5.3a
shows an example, where the type checker returns the following error message:

128 5 | PyTy: Repairing Static Type Errors in Python

“Incompatible parameter type [6]: Expected int for 1st positional only parameter
to call pow but got str”, where the message hints at replacing strwith the correct
type int.50 Note that the hinted type might not be an exact match to the newly
annotated type. For example, we consider an error message that suggests str
as correctly hinted also if the developer fixes the error using Optional[str].
Given the above definition, we find that 89 out of 125 (71.2%) type fixes in

our study are correctly hinted by the type checker. These hinted types can serve
as a reference for APR tools to narrow down the search space. The types of code
changes correctly hinted by the checker are shown in Figure 5.4b.
Figure 5.4c shows how the developers use (or do not use) the correctly hinted

types. As an example, in Figure 5.3c, the type checker returns the following
error message: “Incompatible return type [7]: Expected Optional[Text] but got
Union[None, Path, Text]”.51 The developer does not fix the error by using the
suggested type Union[None, Path, Text], but instead uses Optional[Union[Path,
Text]]. In contrast, the example in Figure 5.3b shows a case where the devel-
oper uses the type suggested by the type checker. We find that for 64 out of the
89 hints (71.9%) the type used by the developer is exactly as suggested in the
error message. It is also common to introduce a value of the suggested type,
e.g., by adding return -1 to a function supposed to return int. Besides the 89
error messages that correctly hint at the correct type, most of the remaining
messages (24 out of 36) give no hint at all. For example, this is the case for the
error classes “Undefined type”, “Invalid type”, and “Undefined attribute”.

Summary: PQ3 Most types used in fixes (71.2%) are correctly hinted by
the type checker, and developers often follow these hints.

50https://github.com/TheAlgorithms/Python/commit/6089536
51https://github.com/RasaHQ/rasa/commit/1ded5ef

5.3 | Preliminary Study 129

https://github.com/TheAlgorithms/Python/commit/60895366c0f50844af2737130ed98c2510e90060#diff-b146f69681cf682252a7ed83539b858a4a1b2c9367dcbc172f064637c26d4eceL244
https://github.com/RasaHQ/rasa/commit/1ded5ef#diff-748793f55fcf9a17f1c97bf1b4e2d48bd8c3629768d816dbec5328690733d0beL624

Ex
ac

t l
in

e
En

cl
os

in
g

fu
nc

tio
n

re
tu

rn
En

cl
os

in
g

fu
nc

tio
n

En
cl

os
in

g

fu
nc

tio
n

pa
ra

m
et

er
Fu

nc
tio

n
ca

lle
e

Su
pe

rc
la

ss
 a

ttr
ib

ut
e

Ot
he

rs
0

10

20

30

40

50

60

Fr
eq

ue
nc

y

(a) Top seven locations for fix patterns.

M
od

ify
 fu

nc
tio

n

pa
ra

m
et

er
 ty

pe
M

od
ify

 fu
nc

tio
n

re
tu

rn
 ty

pe
Ad

d
re

tu
rn

va

lu
e

M
od

ify
 a

tt
rib

ut
e

ty
pe

M
od

ify
 v

ar
ia

bl
e

ty
pe

Re
m

ov
e

ty
pe

O
th

er
s

0

10

20

30

40

50

60

Fr
eq

ue
nc

y

(b) Top seven fix patterns correctly hinted
by the type checker.

 e
xp

ec
te

d

ty
pe

D
o

no
t
us

e

U
se

 e
xp

ec
te

d
ty

pe pt
io

na
l

on
e

 O
U

se

N
fo

r
U

se
 v

al
ue

 o
f
ty

pe
U

se
 s

up
er

 t
yp

e
C

an
no

t
re

an
no

ta
te

O
th

er
s

0

10

20

30

40

50

60

F
re

q
u

e
n

cy

(c) How developers use the hint from the
type checker.

Figure 5.4: Fix locations and usefulness of error messages.

130 5 | PyTy: Repairing Static Type Errors in Python

5.3.3 Implications

The threemain findings of the preliminary study guide the design of our approach
as follows.

PQ1 We observe that type errors and their fixes expose recurring patterns, which
might suggest an approach based on manually designed rules and heuristics
for selecting them. However, we also find that there are ambiguous map-
pings from errors to fix patterns, making a rule-based approach laborious
and fragile. As a result, we decide against a rule-based and in favor of a
data-driven approach, aiming for a model that learns when to apply which
fix pattern from fixes performed by developers.

PQ2 We find that most type errors are fixed by editing a single line, and that this
line is often localized correctly by the type checker. Hence, we focus our
work on fixing type errors in single-hunk edits52 and exploit the localization
hint given by the type error location.

PQ3 We find that the error message provided by the type checker often gives
valuable hints for finding the fix, e.g., which type to use. As a result, we
provide the error message as an input to our approach.

5.4 Approach

Based on the findings of our preliminary study, we design PyTy, a data-driven
approach to automatically fix static type errors in Python using a cross-language
transfer learning approach. Figure 5.5 shows an overview of the approach, which
consists of two phases. First, during the offline phase, we automatically collect
a dataset of type error fixes, PyTyDefects, from GitHub by combining delta
debugging and gradual type checking, followed by fine-tuning a pre-trained
model [19] with PyTyDefects. Second, during the online phase, PyTy receives
code with a type error as the input and then queries the model for fix candidates.
The approach uses the type checker to validate that the type error gets resolved
when applying a fix candidate, and then reports only fixes that are guaranteed
to remove the targeted type error.

52Hunks may be larger than single lines, allowing PyTy to predict some fixes that involve multiple
lines.

5.4 | Approach 131

Type checking &
Delta debugging

Fine-tuningPyTy

Type error
 fix

Pre-trained
TFix model

k times

Dataset of isolated
type error fixes

Offline
Online

Success
Failure

Candidate
 fix

Code with
type errors

Commits
with type
error fixes

Type checking
for validation

Figure 5.5: Overview of the approach.

5.4.1 Automated Data Gathering

To build a learning-based APR model, we must first collect a relevant dataset
as our training data. As a first step, we search for Python repositories that
are popular (≥ 100 stars), have a manageable size (≤ 5GB), and were created
between 2010 and 2021 on GitHub. We use the keywords “fixing+typing”,
“fixing+pyre”, “fixing+mypy”, “typing+bug”, and “typing+error” to search for
commits that possibly remove type errors. Next, we run the type checker before
and after each such commit to find commits that indeed remove type errors. As
a result, we obtain 32,330 type errors that are removed by 4,515 commits in
176 GitHub repositories.
Many of the extracted commits contain changes not directly related to fixing

type errors. Moreover, a single commit often fixes multiple type errors. Fig-
ure 5.6 illustrates these problems with an example.53 To isolate individual type
error fixes, we present a delta debugging-inspired [284] algorithm that reduces
commits into small code changes that fix a single type error. The basic idea is to

53Simplified from https://github.com/jazzband/django-redis/commit/5f6f383

132 5 | PyTy: Repairing Static Type Errors in Python

https://github.com/jazzband/django-redis/commit/5f6f38362dd587aae78d9b8ff97a1e2fe800ba5d#diff-680e70773dd1969f27b4d66da3dd5759928346dceb2599182141ecbc7894764cL17

iteratively reduce the set of code hunks while preserving the fact that the code
change fixes a particular type error.
Algorithm 5.1 summarizes our approach for reducing a commit to a small

set of code changes that fix the given type error. We illustrate the algorithm
using the example in Figure 5.6. We focus on the type error “Unbound name:
basestring is used but not defined in the current scope”, reported for the line
in hunk H1. The error gets fixed by changing the base class to object. Our
approach considers the four code hunks (H1, H2, H3, and H4) of this commit,
and determines which hunks are relevant for fixing the type error with the
following steps, where line numbers refer to Algorithm 5.1:

1. The algorithm splits the set of hunks into H1+H2 and H3+H4with granularity
two (line 8):

a) The algorithm patches the code with only hunks H1+H2, which yields
parsable code (lines 9 and 10).

b) The type error disappears and there are no new errors (lines 11
and 12).

c) There are still two hunks H1+H2 (line 13).

2. The algorithm splits the code hunks H1+H2 into H1 and H2 (line 8):

a) The algorithm patches the code with only hunk H1, which yields
parsable code (lines 9 and 10).

b) The type error disappears and there are no new errors (lines 11
and 12).

3. The algorithm returns H1 as a minimal code change to fix the type error
(line 14).

To properly track the error location while reducing the hunks, we need to keep
track of how the line numbers change. To this end, we calculate the new line
number based on how many lines are inserted or removed in each code hunk.
We consider the error fixed if the error no longer exists at the corresponding
line and column. If the error is located inside a code hunk, i.e., the code with
the error is being modified, we consider the error as fixed only if all lines in the
code hunk are free of errors after the change.

5.4 | Approach 133

Hunk H1
class CacheKey(basestring):

Hunk H2
pass

Hunk H3
if isinstance(key, CacheKey):

key = CacheKey(smart_str(key))

Hunk H4
if timeout == 0:

(a) Commit 1.

Hunk H1
class CacheKey(object):

Hunk H2
def __init__(self, key):

self._key = key
...

Hunk H3
if not isinstance(key, CacheKey):

key = CacheKey(key)

Hunk H4
if timeout is None:

...

(b) Commit 2.

Figure 5.6: Multi-hunk commit that fixes multiple type errors.

To ensure the quality of PyTyDefects, we apply additional filtering steps.
Algorithm 5.1 checks that there are no new errors introduced by the code
changes (line 12). The algorithm also rejects any set of code hunks that result
in parsing failures (line 10). The space complexity of the algorithm is O(2 ∗ N),
where N = size(Doriginal) and the time complexity is O(N ∗ log N).
Running the algorithm on the 32,330 type errors gives 11,955 examples of

reduced error fixes. We further filter them by keeping only fixes that (i) are
relatively small (≤ 512 characters and at most three changed lines), which is
motivated by limitations of the neural model (Section 5.4.2); (ii) do not contain
any error suppression; (iii) are not only deletion; (iv) are located close (i.e.,
within the same hunk) to the reported bug location. Finally, after applying these
filters, PyTyDefects has 2,766 entries that cover ten frequent categories of type
errors listed in Table 5.1.54 We select 10% (always rounding up to the nearest
integer) of the entries of each error class in this final dataset as a test set, and
then split the remaining fixes into 90% for training and 10% for validation.

54The distribution of type errors is similar to that in our preliminary study (Figure 5.2), but not
exactly the same because the datasets differ.

134 5 | PyTy: Repairing Static Type Errors in Python

5.4.2 Neural Type Error Fixing

Given the automatically extracted dataset of type error fixes, PyTy trains a neural
model that predicts how to fix type errors. The input to the model is a sequence
of one or more lines, i.e., the size of a single hunk, that contains a type error.
The output of the approach is a fix that removes the targeted type error.

Base Model. Instead of learning a model from scratch, we fine-tune a model
pre-trained on another APR task. Building on a pre-trained model is motivated
by the fact that PyTyDefects, with 2,766 examples, is relatively small. As our
base model, we use TFix [19], a learning-based APR technique trained to fix
linter errors in JavaScript. We select TFix for three reasons: (i) it is already
trained on a bug fix dataset of 104,804 samples, (ii) it accepts error messages
as input, and (iii) the TFix authors used it to predict single line fixes, which
resembles our single-hunk setup. By fine-tuning TFix, PyTy transfers the already
learned knowledge to the related but different domain of Python type errors
(Section 5.6.3). TFix itself is based on T5 [207], a transformer-based model that
maps sequences of input tokens to sequences of output tokens. The simple input
and output structure eliminates the need for implementing a static analysis
tool to transform our code into a specific structure, such as graphs [5, 45].
Furthermore, having an unconstrained token sequence may enable the model to
fix errors missed by a template-based APR approach, which is inherently limited
to its set of templates (Section 5.6.4).

Fine-Tuning for Python Type Error Fixing. To fine-tune TFix with PyTyDe-
fects, we follow the same input format as TFix:

“fix” t m lk “:” C

where “fix” and “:” are literals, t is the class of type error, m is the error
message, lk is the line of code with the type error, represents a space, and
C represents the buggy lines of code (i.e., the single-hunk we extracted in
Section 5.4.1). In the T5 framework, the string ‘“fix” t m lk “:”‘ represents
the current task, and C represents the input of this task. The model outputs C ′,
which we use as a replacement for C to fix the type error.

5.4 | Approach 135

Python Code Pre- and Post-Processing. We use the tokenizer from the Python
standard library to pre-process the source code and inject special tokens for
indentation and dedentation. TFix uses SentencePiece [127] as its tokenizer.
However, SentencePiece does not take the number of whitespaces into account,
as it escapes all whitespaces into a single “_” symbol. Since the amount of
whitespace carries semantics in Python, we preserve this information by adding
special tokens “<IND>” and “<DED>” into the source code before passing it to
the model. Given a prediction by the model, PyTy removes the special tokens in
a post-processing step to obtain syntactically correct Python code.

Validating Fixes via Type Checking. Once trained, we query the model for
a ranked list of the k most likely fixes. To ensure that a fix suggestion given
to a user indeed removes the targeted type error, PyTy validates all candidate
fixes by running the type checker on them. If and only if the targeted type error
disappears and no new errors appear, the fix is suggested to the user.

136 5 | PyTy: Repairing Static Type Errors in Python

Algorithmus 5.1 Extract relevant hunks with delta debugging.
Input: Files fold with type error er r and fnew after commit with er r fixed
Output: Minimal hunk(s) of the commit, containing only er r fixed
1: W ← type_check(fold) ◃ Set of all warnings in fold
2: Doriginal ← diff(fold , fnew) ◃ All diff hunks between fold and fnew
3: granularity← 2 ◃ Set default granularity
4: while granulari t y ≤ size(Doriginal) do
5: min← False
6: D← Doriginal
7: while size(D)> 1 and granulari t y > 1 do
8: for d in split(D, granulari t y) do ◃ Split the set of hunks D
9: ffixed← patch(fold , d) ◃ Apply a subset of D to file fold
10: if parsable(ffixed) then
11: Wfixed← type_check(ffixed)
12: if ̸ ∃ er r in Wfixed and Wfixed ==W then
13: if size(d) == 1 then
14: return d
15: else
16: D← d
17: min← True
18: break
19: end if
20: end if
21: end if
22: end for
23: if min== False then
24: if granulari t y ∗ 2≤ size(D) then
25: granulari t y ← granulari t y ∗ 2
26: else if granulari t y == size(D) then
27: return D
28: else
29: granulari t y = size(D)
30: end if
31: end if
32: end while
33: ffixed← patch(fold , D) ◃ Apply D (size=1) to file fold
34: if parsable(ffixed) then
35: Wfixed← type_check(ffixed)
36: if ̸ ∃ e in Wfixed and Wfixed −W = ; then
37: return D
38: end if
39: end if
40: end while

5.4 | Approach 137

5.5 Implementation

We fine-tune the t5-base (220M parameters) model of TFix for 30 epochs with
a batch size of 32, and then evaluate the model with the best validation loss
on the validation set. The model converges at the 17th epoch. We follow the
default hyperparameters of TFix [19].
When validating candidate fixes using the type checker, we sample from

the model up to k = 50 predictions to be validated. Since PyTy validates fix
candidates automatically, a user does not have to inspect these 50 suggestions,
but only the first one found to successfully remove the type error. To fix 281 type
errors (i.e., our test set, which amounts to a total of 174,586 lines of code) and
automatically check whether the targeted type errors disappear, PyTy takes in
total six hours and 44 minutes, i.e., an average of 86.2 seconds per type error fix.
We perform all experiments on a server with 48 Intel Xeon CPU cores clocked at
2.2GHz, 250GB of RAM, one NVIDIA Tesla V100 GPU, running Ubuntu 18.04.
Most of the time is spent on running the type checker for validating candidate
fixes.

5.6 Evaluation

We evaluate both PyTyDefects and the learning-based type error repair, focusing
on the following research questions (RQs):

RQ1 How effective is our automated data gathering at producing minimal code
changes that fix type errors?

RQ2 How effective is PyTy at fixing type errors?

RQ3 How do variants of PyTy compare to the full approach?

RQ4 How does PyTy compare to state-of-the-art APR techniques?

5.6.1 RQ1: Effectiveness of Automatic Data Gathering

Data analysis. To validate the effectiveness of automatically gathering PyTy-
Defects, two of the authors independently annotate a random sample of 100
of the 2,766 entries in the dataset. Each entry is assigned one of three labels:

138 5 | PyTy: Repairing Static Type Errors in Python

basis_from: Basis = None,
basis_to: Basis = None,
I: ndarray = None,
expand: bool = False) -> ndarray:

(a) Commit with multiple type errors.

basis_from: Optional[Basis] = None,
basis_to: Optional[Basis] = None,
I: Optional[ndarray] = None,
expand: bool = False) -> ndarray:

(b) Commit with multiple type error fixes.

Figure 5.7: Example of a correct (but not minimal) entry in PyTyDefects.

minimal if the extracted code change fixes a type error and cannot be further
reduced, correct but not minimal if the extracted code change correctly fixes a
type error but is not minimal, and wrong otherwise.

Results. After independently labeling the 100 entries, the two annotators
initially have an intersection of 89 labels. After discussing the divergent labels,
the labels of two entries are refined, giving a final agreement on 94/100 mini-
mal, 3/100 correct but not minimal, and 0/100 wrong entries. The remaining
three entries with divergent labels are due to hunks that fix two type errors
at once. These entries are minimal in the sense that a hunk-based reduction
algorithm cannot further reduce them, but they could be further reduced by a
more fine-grained reduction algorithm [93, 245]. The inter-rater agreement,
as given by Cohen’s kappa coefficient [38] is 0.651, which means a substantial
agreement [128].
As an example of a minimal type error fix, recall hunk H1 from the previously

discussed commit in Figure 5.6. All changes in hunk H1 are necessary for fixing
the type error. Figure 5.7 shows an example of a correct but not minimal reduced
commit, which includes some changes not relevant to fixing the type error.55 A
single hunk updates multiple parameter type annotations of the same function.
However, only one code change is relevant to fixing the type error reported for
basis_to, which should be annotated Optional[Basis] instead of Basis as it
is initialized to None.

55https://github.com/kinnala/scikit-fem/commit/a555ca3

5.6 | Evaluation 139

https://github.com/kinnala/scikit-fem/commit/961610a6dc10fd23cb777540eeb0cc2cda555ca3

...
vprint(f"{prefix} {lineno}: {

action}
Constrain Mouse: {’y’ if

constraint > 0
else (’no’ if constrained

== 0 else ’check
stack’)}")

(a) Code with type error.

...
vprint(f"{prefix} {lineno}:

{action}
Constrain Mouse: {’y’ if

constraint > 0
else (’no’ if constraint

== 0 else ’check
stack’)}")

(b) Fix by the developer.

...
vprint(f"{prefix} {lineno}:

{action}
Constrain Mouse: {’y’ if

constraint > 0
else (’no’ if constraint

== 0 else ’check
stack’)}")

(c) Fix suggested by PyTy.

Figure 5.8: Exact match of fix for type error “Unbound name: Name
constrained is used but not defined in the current scope”.

...
string = _fmt(string)
return lib.TCOD_console(

self.console_c, x, y,
width, height,

string
)

(a) Code with type error.

...

return lib.TCOD_console(
self.console_c, x, y,

width, height,
_fmt(string)

)

(b) Fix by the developer.

...
byte_string = _fmt(string)
return lib.TCOD_console(

self.console_c, x, y, width
, height,

byte_string
)

(c) Fix suggested by PyTy.

Figure 5.9: Correct fix different from the developer-provided fix for type error
“Incompatible variable type: string is declared to have type str but
is used as type bytes”.

},
F5_DEVICE_TYPE: {

DEVICE_CLASS_KEY:
F5Device,

(a) Code with type error.

},
F5_API_DEVICE_TYPE: {

DEVICE_CLASS_KEY:
F5Device,

(b) Fix by the developer.

},
DEVICE_TYPE: {

DEVICE_CLASS_KEY:
F5Device,

(c) Fix suggested by PyTy.

Figure 5.10: Fix predicted by the neural model, but not suggested to the user, as
the type error “Unbound name: Name F5_DEVICE_TYPE is used but
not defined in the current scope” would still exist for DEVICE_TYPE.

140 5 | PyTy: Repairing Static Type Errors in Python

global Bot
if self is Bot:

Bot = new

(a) Code with type error.

global Bot
if self is Bot:
assert isinstance(new,

BotUser)
Bot = new

(b) Fix by the developer.

global Bot
if self is Bot:

new_Bot = new

(c) Fix suggested by PyTy.

Figure 5.11: PyTy-suggested fix that removes the error “Incompatible variable
type: Bot is declared to have type BotUser but is used as type
User”, while changing the behavior in an unintended way.

Summary: RQ1. The automated data gathering yields type error fixes
that are mostly correct (97/100) and minimal (94/100), i.e., PyTyDefects
provides a solid basis to train and validate PyTy.

5.6.2 RQ2: Effectiveness of PyTy

We evaluate the effectiveness of PyTy on all ten classes of type errors covered by
our test set. We configure the approach to consider up to k = 50 candidate fixes.
Note that users do not have to manually check all candidate fixes, but only see
the first successful fix.

Metrics. We use two metrics to evaluate the effectiveness of PyTy. First, we
compute the error removal rate, i.e., how often the approach succeeds at finding
a fix that removes the targeted type error without introducing new type errors.
Second, we compute the exact match rate, i.e., how often the model output is
identical to the fix committed by the developer. This metrics underapproximates
the abilities of PyTy, as there might be fixes that address the type error in a
reasonable way that differs from the original fix.

Quantitative Results. Table 5.1 shows the number of samples used for training
and testing, the error removal rate, and the exact match accuracy. Each row in
the table corresponds to one kind of type error reported by the type checker.
PyTy successfully removes the type error in 85.4% of the cases, and it finds

5.6 | Evaluation 141

Table 5.1: Results of PyTy for each class of type error.

Samples Effectiveness of PyTy

Classes of type errors (test set) Error Exact
removal match

Incompatible variable type 821 (83) 90.4% 65.1%
Incompatible parameter type 600 (60) 80.0% 36.7%
Incompatible return type 296 (30) 73.3% 43.3%
Invalid type 291 (30) 100.0% 83.3%
Unbound name 258 (26) 76.9% 42.3%
Incompatible attribute type 258 (26) 92.3% 73.1%
Unsupported operand 124 (13) 76.9% 38.5%
Strengthened precondition 59 (6) 83.3% 50.0%
Weakened postcondition 51 (6) 50.0% 0.0%
Call error 8 (1) 100.0% 100.0%

Total 2,766 (281) 85.4% 54.4%

exactly the developer-provided fix for 54.4% of all errors. Comparing different
kinds of type errors, we find the approach to be effective across a wide range of
errors. An exception are Weakened postcondition errors, which are often caused
by type-incorrect, overriding methods in custom classes, i.e., a kind of mistake
that requires non-local, project-specific information to be fixed.

Examples. The example in Figure 5.9 fixes the type error in a way that matches
the intention of the developer but differs from the original fix.56 The developer
fix directly passes the byte string _fmt(string) as an argument to the function
lib.TCOD_console_printf_ex, avoiding the error caused by re-assigning the
byte string to the variable string, which is previously annotated as type str.
The PyTy-suggested fix instead declares a new variable byte_string for the byte
string, and passes it to lib.TCOD_console_printf_ex as an argument.
Figure 5.10 shows a predicted fix that fails to remove the type error.57 The

developer fix uses a variable (F5_API_DEVICE_TYPE) imported from another

56https://github.com/libtcod/python-tcod/commit/60066f3
57https://github.com/networktocode/pyntc/commit/ebb35344e0121

142 5 | PyTy: Repairing Static Type Errors in Python

https://github.com/libtcod/python-tcod/commit/60066f30f07303a0cb7092b760a8e661330a63b9
https://github.com/networktocode/pyntc/commit/ebb35344e0121

package. However, since the context code and the error message do not give any
hint about the identifier to use, the model simply replaces it with DEVICE_TYPE.
Because PyTy validates that a fix candidate removes the type error before re-
porting the fix to the user, this fix suggestion is not shown to users, highlighting
the importance of validating fix candidates.
Finally, Figure 5.11 fixes the type error but changes the semantics of the code

in an unintended way.58 The error is because Bot and new, which is a variable,
have incompatible types. The developer fixes the error by asserting that new is of
type BotUser. PyTy instead suggests a fix that declares a new variable new_Bot,
which however fails to update the global Bot variable. We include this example
to show that PyTy is limited by relying on the type checker as the only validation
mechanism. Future work could address this limitation by additionally validating
fixes by running a test suite.

Type Fixes in the Wild. To further validate the usefulness of PyTy in practice,
we create pull requests with PyTy-suggested fixes for type errors. We run Pyre
on different GitHub projects randomly picked among the projects in PyTyDefects.
In total, we create 30 pull requests (for 17 incompatible variable type errors, ten
incompatible parameter type errors, and three invalid type errors). By the time
of this writing, 20 of the pull requests have been merged, six are still open, and
four are closed.
For the pull requests merged so far, the developers generally were grateful

about the changes. In one case, the developers even asked us to apply similar
fixes in other code locations, which we did, as we could use PyTy-suggested
fixes there as well. The four closed pull requests are: (i) Two cases where
the developers prefer to use type casts and dynamic type checks rather than
updating the type annotations; (ii) One case where the developers decided to
suppress a warning about an incompatible Optional variable type; and (iii)
One case where the developers consider a warning about an incompatibility
between List[Optional[Path]] and List[None] to be a false positive. Overall,
the developers’ feedback confirms PyTy’s usefulness in practice.

58https://www.github.com/lykoss/lykos/commit/abbd35c

5.6 | Evaluation 143

https://www.github.com/lykoss/lykos/commit/290f6e0d75e82eb8810106b5240b033c9abbd35c

Table 5.2: Ablation study and comparison with LLMs.

Error removal (%) Exact match (%)

Approach Top-1 Top-5 Top-50 Top-1 Top-5 Top-50

No pre-training 47.3 57.3 71.2 30.2 45.2 48.8
Vanilla TFix 4.6 11.0 16.7 0.0 1.1 1.8
No preprocessing 17.8 23.5 29.5 37.0 45.6 54.1
Small TFix model 43.1 63.3 79.0 32.7 44.8 53.0

text-davinci-003 21.7 27.8 34.6 14.6 18.1 20.9
gpt-3.5-turbo 21.9 23.8 26.0 10.3 12.1 14.5
gpt-4 34.1 36.7 39.1 18.9 22.1 26.4

Full PyTy 50.9 66.2 85.4 37.7 48.0 54.4

Summary: RQ2. PyTy successfully removes the type error in 85.4% of the
cases evaluated, and it finds exactly the developer-provided fix for 54.4%
of all errors.

5.6.3 RQ3: Ablation Study of PyTy

We perform an ablation study to evaluate the effectiveness of PyTy in different
configurations. Table 5.2 summarizes the results discussed in the following.

No pre-training. We train the T5 model directly on PyTyDefects, i.e., without
pre-training the model on the JavaScript APR tasks. The purpose of this exper-
iment is to check if the knowledge of fixing JavaScript errors helps in fixing
Python type errors. We use the same experimental setup as discussed in Sec-
tion 5.5, except that training continues beyond 30 epochs because the evaluation
loss keeps decreasing. We train the model for 100 epochs and pick the model
with the least validation loss, which is at the 32nd epoch. The results show that
pre-training the model on the JavaScript repair task contributes significantly to
its effectiveness. For example, the top-1 exact match rate drops from 37.7% to
30.2% without pre-training.

144 5 | PyTy: Repairing Static Type Errors in Python

Vanilla TFix. We try to predict the fix with the original TFix model, i.e., without
fine-tuning TFix with PyTyDefects. The purpose of this experiment is to check
whether gathering a dataset of type errors is really necessary. We use the same
experimental setup as discussed in Section 5.5, except that we use the t5-large
(770M parameters) model of TFix. The reason is that removing fine-tuning also
removes the resource constraints that motivated us to use the t5-base model
(220M parameters). For this experiment, we do not preprocess the Python
source code as the tokenizer of the TFix model is trained without the special
tokens. As shown in Table 5.2, the effectiveness drops dramatically, e.g., to only
1.8% exact matches within the top-50 suggestions. The reasons are (i) that
Python and JavaScript have different syntax, i.e., it is unlikely for the model
to output syntactically correct Python code, and (ii) that the TFix model is not
trained to fix type errors.

No preprocessing. We try to generate the fix without the preprocessing that
adds indentation and dedentation tokens (Section 5.4.2). We use the same
experimental setup as discussed in Section 5.5, but we remove the special tokens
from the input and output code. We find preprocessing to be important, as
otherwise the error removal rate drops significantly, e.g., from 50.9% to 17.8%
in the top-1 prediction. For exact match accuracy, the decrease in effectiveness
is less strong, but the exact match might not be equal to the actual developer
fix, as we ignore the newline tokens and the number of whitespaces for the
comparison.

Small TFix model. To study the impact of the model size, we try to predict
the fix by basing PyTy on the small TFix model (with only 60M parameters). We
use the same experimental setup as discussed in Section 5.5. As the evaluation
loss of this model keeps decreasing beyond the 30th epoch, we train the model
for 100 epochs, which converges at the 47th epoch. The effectiveness of PyTy
is negatively affected by using a smaller model, e.g., with 43.1% instead of
50.9% top-1 error removal rate. At the same time, the negative impact of the
small model can be partially compensated by considering more fix suggestions:
For example, the top-50 exact match rate is reduced only slightly from 54.4%

5.6 | Evaluation 145

to 53.0%. These results show that PyTy could also be effective in a resource-
constrained setup, such as a developer laptop instead of a server.

Summary: RQ3. The full PyTy outperforms simpler variants of the approach,
showing that each of PyTy’s components contributes to its effectiveness.

5.6.4 RQ4: Comparison with Prior Work

RQ4a: PyTy vs. Large Language Models

Fixing type errors relates to general-purpose APR [134]. The following compares
PyTy with large language models (LLMs), which have been shown to yield state
of the art results [108, 272, 273]. PyTy and LLMs fundamentally differ in the
sense that PyTy is designed and fine-tuned specifically for type error repair,
whereas LLMs are trained in a task-independent manner, but typically on much
more data.

Experimental Setup. We compare PyTy with three recent models offered by
OpenAI: text-davinci-003, gpt-3.5-turbo, and gpt-4. Our prompt consists of five
parts: a description of the task, the buggy code snippet, the type checker’s error
message, the line containing the error, and a description of the expected output
format.

Results. The lower part of Table 5.2 shows the effectiveness of different models.
PyTy clearly outperforms all LLMs in terms of error removal and finding the
exact developer fix. The gpt-4 model, as the most recent and largest model, is the
most effective LLM. The text-davinci-003 model is slightly more effective than
gpt-3.5-turbo, which may be because the latter is optimized for chat. Manually
analyzing the successful fixes, we notice that the LLMs mostly fix those errors
that can be fixed with a single-token edit. Instead, PyTy can fix more complex
type errors.

Summary: RQ4a. PyTy is more effective than prompting general-purpose
LLMs (54.4% vs. 26.4%).

146 5 | PyTy: Repairing Static Type Errors in Python

RQ4b: PyTy vs. vs. PyTER

PyTER [186] repairs bugs that manifest through a TypeError exception. For
a comparison, consider the two subproblems that both approaches address.
Subproblem 1 is detecting a type error, done by the static type checker in our
approach and by observing a runtime exception in PyTER. Subproblem 2 is fixing
a detected type error, done by a neural model in our approach and by applying a
set of repair templates in PyTER. How PyTy and PyTER address subproblem 1
differs fundamentally. While static type errors manifest without running the
code, revealing a runtime type error require tests cases or a production run
that triggers the error. Moreover, the same conceptual problem may manifest
at different locations. For example, a function that returns an incorrect value
will manifest as a static type error at the return statement, but as a runtime
type error at a code location that uses the value. Because of these differences,
performing a direct, end-to-end comparison is neither possible nor meaningful.
Instead, we quantify the overlap of the two approaches in terms of the errors
they address and the fixes that they could potentially find, which answers four
questions.

PyTER on PyTyDefects. 1) How many of the errors in PyTyDefects manifest via
a runtime type error? We pick a random sample of 30 of all 281 fixes in our test
set and inspect their commit messages. The inspection shows that for 16/30
fixes, the problem was certainly found via static type checking, e.g., because
the message mentions the type checker, and for 27/30 fixes, the problem was
certainly not found via a TypeError thrown at runtime. 2) How many of the
type errors in PyTyDefects are in the scope of PyTER’s fix templates? The repair
templates cover three kinds of fixes: adding an instanceof check, adding a
type conversion, e.g., via a call to int(), and adding code to catch and handle
a TypeError exception. We check for each type error in our test set whether
PyTER’s repair templates can be instantiated into the fix, which shows that
15/281 type errors are in scope for PyTER, whereas the remaining 266 errors
are not covered by any repair template. Examples of fixes that are out-of-scope for
PyTER are: (i) Fixes that change a value, e.g., by modifying a string "a b c" into
an array of strings ["a", "b", "c"]. (ii) Fixes that change a type annotation,

5.6 | Evaluation 147

e.g., from T to Optional[T]. (iii) Fixes that add a call to typing.cast(). In
summary, PyTER address only a small fraction of the type errors in our dataset.

PyTy on PyTER’s dataset. 3) Howmany of the errors in PyTER’s dataset manifest
via a static type error? The Pyre type checker that PyTy builds on checks
(partially) type-annotated code only. Among the 93 errors in PyTER’s dataset,
16 are in a type-annotated function, and hence, checked at all, but the type
checker does not find the errors fixed by PyTER. 4) How many of the type errors
in PyTER’s dataset are in the scope of PyTy’s neural model? Our approach focuses
on single-hunk fixes where the type error location is inside the hunk that needs
to be changed. While these assumptions commonly hold for static type errors
(Section 5.3), only 11/93 errors in PyTER’s dataset match the assumptions.
Similar to above, PyTy address only a small fraction of the type errors in the
PyTER dataset.

Summary: RQ4b. Our approach and PyTER [186] are complementary in
the sense that they address type errors that manifest in different ways and
that they apply different kinds of fixes.

5.7 Discussion and Threats to Validity

5.7.1 Python Repositories

We select popular projects for our dataset, because recent work finds such
projects to contain type annotations and type errors [43]. A different set of
repositories could yield different results, in particular for the preliminary study
(Section 5.3).

5.7.2 Limitations of static type checking

PyTy builds upon the Pyre type checker, which as all static type checkers, may
suffer from false positives and false negatives. A false positive, where the type
checker incorrectly reports a type error in correct code, may lead to unnecessary
code modifications by PyTy. Conversely, a false negative, where an error goes

148 5 | PyTy: Repairing Static Type Errors in Python

unnoticed by the type checker, may cause PyTy to suggest a fix that does not
really solve the problem, or even worse, introduce a new problem. As a lower
bound on PyTy’s effectiveness despite these limitations, we find that 54.4% of the
predicted fixes exactly match the developer’s fix. Other type checkers than Pyre
may find different kinds of type errors and provide different kinds of hints for
fixing them. Because our approach uses the type checker as a black-box, adapting
our implementation to support another type checker seems straightforward.

5.7.3 Type annotations

Because the type checker reports errors only in functions that are at least partially
type-annotated, PyTy cannot fix errors in completely unannotated code. Despite
this limitation, there is evidence that more and more code bases get type-
annotated, and hence, are in scope for PyTy. For example, a recent study on the
evolution of type annotations [43] finds 50 type annotations per 1,000 lines of
code and an increasing trend on the adoption of type annotations. Moreover,
our dataset of thousands of real-world commits that address type errors shows
that developers care about such errors. Finally, as described in Section 1, large
companies, such as Google, Dropbox, and Meta, are actively working toward
type-annotating their Python code bases.

5.7.4 Type Errors

PyTyDefects, containing 2,766 real-world type error fixes, is filtered to contain
only errors fixable with a single-hunk code change, and we cannot draw any
conclusions about more complex fixes. As shown in Section 5.3.2, many real-
world fixes are local edits, which has motivated our design decision to focus
on single-hunk fixes. The distribution of error classes in PyTyDefects reflects
the errors that occur in practice, and does not cover all error classes that the
type checker may find. Thanks to the data-driven design of PyTy, the approach
should be able to fix further classes of type errors when given corresponding
training data.

5.7 | Discussion and Threats to Validity 149

Future work We plan to improve the error localization and will try different
prompts to improve the performance of LLMs. Moreover, we plan to fine-tune
different models beside TFix and apply PyTy to more classes of type errors.
Finally, we plan to integrate our approach into an IDE.

5.8 Concluding Remarks

This chapter presents PyTy, the first automated repair technique targeted specif-
ically at statically detectable type errors in Python. The design of the approach
is motivated by the findings of a preliminary study. To generate a relevant
dataset, we apply a combination of delta debugging and type checking, which
results in PyTyDefects, containing 2,766 Python type errors and fixes. We then
present cross-lingual transfer learning, which addresses the problem of having a
small dataset for a deep learning model by fine-tuning an existing APR model
originally trained for another task and language. Our evaluation shows the
effectiveness of PyTy, e.g., by providing a fix that removes the targeted type
error for 85.4% of the studied errors. Finally, as of this writing, 20 out of 30
GitHub pull requests based on PyTy type fixes have been merged by developers,
demonstrating the usefulness of PyTy in the wild.

150 5 | PyTy: Repairing Static Type Errors in Python

Ch
ap
te
r 6

Related work

In this chapter, we explore research closely related to the four projects described
in this dissertation. The related work presented here is not meant to be exhaus-
tive; instead, it underlines significant works on related problems and compares
this dissertation to existing work.

6.1 Analyses of Code Changes

There are numerous approaches that try to analyze and understand code changes.
Hashimoto et al. propose a technique for reducing a diff to the essence of a
bug [90]. Nielsen et al. [185] use JavaScript code change templates to fix
code broken due to library evolution. Additionally, some methods document
code changes with natural language descriptions [26]. Predictive models like
SCC [67] and DeepJIT [97] estimate the likelihood of a code change introducing
bugs. Approaches like DiffBase [270] aid in multi-version program analyses,
while CodeShovel[79] chronicles a method’s evolution within version histories.
All these approaches relate to our work in Chapter 3 by also reasoning about
code changes, but they aim for different goals than DiffSearch, which is a search
engine for code changes.

151

Moreover, several researchers focus on abstract representations, constructing
edit scripts on ASTs [56, 58, 61, 89], providing an abstract representation of
a change that can then be applied in different scenarios [167]. Future work
for DiffSearch could explore using an edit script-based representation of code
changes to search for code changes. An advantage of our parse tree-based
feature extraction in Chapter 3 is that it does not require aligning the old and
new code, allowing us to featurize hundreds of thousands of code changes in
reasonable time. Paletov et al. [190] study code changes related to crypto APIs
and they extract security fixes from code histories. Weissgerber et al. [264]
identify code changes that have a high chance to be refactored. Hashimoto et al.
propose a technique for reducing a diff to the essence of a bug [90].
SCC [67] and DeepJIT [97] are predictive models that estimate the correlation

between the insertion of a code change and introducing a bug. A related problem
is to find the bug-inducing code change for a given bug report [265, 269]. Finally,
Zeller [284] introduces the delta debugging algorithm to find code hunks that
are “failure-inducing” in a commit. The algorithm is widely used, in particular
for fault localization [267]. In Chapter 5, we treat code hunks that fix the
type errors as “failure-inducing”, in an approach similar to prior work [17], but
adopted to type errors.

6.2 Software Evolution Studies

Software is continuously evolving and many researchers perform interesting
studies. Nguyen et al. [181] study the repetitiveness of code changes in code
histories, modeling a code change as a pair of AST sub-trees within a method.
Gu et al. [81] analyze large project histories to study problems related to multi-
thread programming. Dagenais et al. [39] study code evolution to recommend
relevant changes with a high precision. Chapter 4 contributes the first in-depth
study of the evolution of type annotations in Python.

152 6 | Related work

6.3 Tracking Code Elements Across Version Histories

Tracking code elements across the different commits in a project is a challenging
problem due to the various ways how code may change, and because there is
no universally accepted definition of when a code element remains “the same”
across a change. Grund et al. [79] propose CodeShovel, which addresses this
problem on the method level through an AST-based, heuristic algorithm. Ketkar
et al. [119] focus on type changes in Java, using type fact graphs to represent
code changes. In contrast, our algorithm in Chapter 4 for extracting type
annotation changes is the first attempt at tracking annotations in a dynamically
typed language (Python).

6.4 Mining and Learning from Code Changes

Mining code repositories has unveiled development histories as potent knowl-
edge wells. Approaches vary from extracting repetitive code changes [176,
178, 179], predict code changes [253], predict bugs [125, 150], or to learn
about API usages [177, 190] as mentioned in the previous Section. Mining
approaches typically consider all code changes in a project’s version history or
filter changes using simple patterns, e.g., keywords in commit messages. In
contrast, DiffSearch allows for identifying code changes that match a specific
query.
Large sets of code changes enable learning-based techniques. One line of work

learns from specific kinds of changes, e.g., fixes of particular bug patterns, how
to apply this kind of change to other code for automated program repair [10,
219, 239]. Another line of work ranks potential program repairs based on their
similarity to common code change patterns [132]. DiffSearch could help gather
datasets of changes for these approaches to learn from, e.g., based on queries
for bug fixing patterns.
Moreover, the feature extractor of DiffSearch relates to techniques for learning

vector representations of commits, such as CC2Vec [98] and Commit2Vec [27].
These techniques train a model on some “pseudo task” for which abundant train-
ing data is easily available, e.g., predicting the words in the commit message [98]
or whether a commit is labeled as security-critical [27]. Once trained, the vector

6.4 | Mining and Learning from Code Changes 153

representations produced by a representation learning model could, in principle,
be used as an alternative to the feature vectors of DiffSearch. In practice, inte-
grating CC2Vec and Commit2Vec into our approach is non-trivial because both
approaches focus on entire commits, which may include many hunks distributed
across multiple files, whereas DiffSearch retrieves code changes at hunk-level
granularity. Finding an appropriate pseudo task for representation learning on
individual hunks, and integrating the resulting embeddings into DiffSearch,
could be interesting future work.

6.5 Clone Detection

DiffSearch(Chapter 3) relates to code clone detectors [107, 114, 144, 220,
224], as answering a query resembles finding clones of the query. In particular,
DiffSearch compares a query against code changes in a way similar to Type-1
clones, and when using placeholders in the query, similar to Type-2 and Type-3
clones. Clone detectors are typically evaluated on a single snapshot of a code
base, and they may take several minutes or even hours to terminate [224]. In
principle, one could use an off-the-shelf code clone detector to search for specific
kinds of code changes, where the old and new parts of the query must be clones
of the old and new parts of a change, respectively. However, this approach would
search for clones among all code changes for each query, which may not be
fast enough for an interactive search engine. Some clone detectors summarize
code in ways related to our feature extraction. For example, Deckard [107]
computes characteristic vectors of parse trees and SourcererCC [224] indexes
large amounts of code into a bag-of-tokens representation. Integrating such
ideas into the feature-based retrieval in DiffSearch could further improve recall.
Inoue et al. [103] propose a code clone detector that supports special tokens,

such as $, ∗, #, to express exact matching, repetitions, and more, similar to
regular expressions. However, their approach cannot express relationships
between an old and a new code snippet, as supported by DiffSearch. Nguyen et
al. [183] perform an empirical study on a large dataset of Java and C# using
API2VEC based on Word2Vec to create feature vectors from APIs. They find this
kind of representation successful, because APIs with similar usage context have
closer feature vectors using this representation. DiffSearch differs from their

154 6 | Related work

approach because match code changes and because perform a matching based
on the syntax of the code more than their usage context.

6.6 Type Annotations and Type Errors

Some prior work studies type annotations. For example, Khan et al. investigate
the impact of using type checkers in Python [121], Rak-amnouykit et al. com-
pare different type checkers with each other [211], and Zhang et al. provide
evidence that static typing may reduce the bug fixing effort [285]. Both our
study (Chapter 4) and Rak-amnouykit et al. [211] report that type-annotated
repositories rarely type-check, showing the need for an APR tool for Python type
errors, such as PyTy.
Jin et al. [110] study type annotations in 17 Python projects. They find six

patterns that type annotations practices follow and they find three features
of Python type annotation files. Chapter 4 differs from their result, because
we analyze many more projects and we focus on different kinds of research
questions focusing more on single type annotations and type errors.
Khan et al. [121] study type errors in Python repositories using mypy. They

conclude that many type defects can be avoided (15%) by simply integrating a
type checker in the software development process. Then, they find that junior
and senior Python developers make a similar number of errors, concluding that
the experience is not always enough to avoid this kind of errors. Chapter 4
differs from this one, because we not only analyze the number of type errors,
but we study the relationship and the evolution between type annotations and
type errors. Moreover, our study focuses on type annotations and not only type
errors.
Researchers also study type annotations in programming languages other than

Python, e.g., relating static type checking in JavaScript with known bugs [65].
Bogner and Merkel [21] compare JavaScript and TypeScript focusing on code
quality and readability. However, also as our findings show (Chapter 4), they find
that TypeScript does not always guarantee fewer errors. Finally, several studies
of dynamically typed languages focus on questions complementary to ours, e.g.,
the use of dynamic language constructs [218], performance issues [228], and
security vulnerabilities [240].

6.6 | Type Annotations and Type Errors 155

Gradual type checkers [188, 257] have developed into powerful tools for
dynamically typed languages. Chen et al. build a framework to check type bugs,
extracting information from source code using static analysis [32]. Dolby et al.
use static analysis with types to track TensorFlow behavior and find bugs [47].
The results of our study (Chapter 4) underline the need for better integrating
such tools into the development workflow.

6.7 Type Prediction for Dynamically Typed Languages

Techniques for predicting type annotations in dynamically typed languages fall
into three categories. First, static type inference [7, 63, 91, 106] computes types
using, e.g., abstract interpretation or type constraint propagation. While sound
by design, these approaches are limited by the dynamic nature of the languages
like JavaScript and Python. Second, dynamic type inference [6, 216] tracks
data flows during an execution of a program, which yields precise types but is
limited by code coverage. Third, probabilistic type prediction propagates and
combines type hints using probabilistic rules [278] or via deep learning [4, 92,
157, 171, 213], sometimes augmented with search-based validation of predicted
types [203] or static type inference [197]. Chapter 4 underlines the need for
such techniques and PyTy (Chapter 5) addresses the complementary problem of
fixing type-related errors.
Beyond type prediction, several other analyses for Python have been proposed,

including techniques to find type-related bugs [277], an analysis to reveal
inconsistencies between the name of a variable and the runtime values stored
in it [194], and a general-purpose dynamic analysis framework [51]. These
analyses are all based on dynamic analysis, which is at least partially motivated
by the lack or incompleteness of type annotations in Python.

156 6 | Related work

6.8 Automated Program Repair

Earlier APR approaches [75] can be classified into heuristic repair, e.g., based on
generate-and-validate method [123, 133], and constraint-based repair, which
synthesizes a patch based constraints [166, 180]. Both techniques rely on test
suites, and hence, may suffer from overfitting [206]. Chapter 5 belongs to a
more recent stream of work on learning-based repair. In contrast to the above
techniques, PyTy does not require tests but uses a static type checker to validate
candidate fixes.
Other learning-based APR approaches include DrRepair [281], which fixes

C compilation errors, Hoppity [45], which represents fixes as a sequence of
graph edits, Recoder [288], based on TreeGen [247], which proposes a syntax-
guided edit decoder. Compared to these GNN-based models, our approach
uses a text-to-text transformer, which is easy to apply to any language. Other
text-based models include SequenceR [35] and work by Tufano et al. [253].
Vasic et al. [254] propose to jointly localize and repair bugs, which is limited to
variable-misuse bugs though. These approaches neither benefit from pre-training
nor target Python type errors. CoCoNut [155] combines multiple models using
ensemble learning. Instead, our approach in Chapter 5 learns how to fix all error
types in one model. Ye et al. incorporate feedback from compiling and executing
tests to train a repair model [283], an idea that could also be adapted to type
error repair. Finally, motivated by recent results that show general-purpose LLMs
to provide competitive results [108, 272, 273, 274], we empirically compare
PyTy with different LLMs (Section 5.6.4).
We are aware of two APR approaches that target type errors. Rite [225] is a

template-based, data-driven approach for type errors in OCaml.
Their approach builds on a specifically designed, AST-based representation of

fixes, while our approach uses textual inputs and outputs.
PyTER [186] is a test-based APR approach to fix runtime type errors in

Python, which we empirically compare with in Section 5.6.4. Their work and
ours (Chapter 5) address related but ultimately different problems: PyTER
requires test cases that trigger a runtime type error, but tests may not exist at all
or have low coverage (e.g., Gruber et al. [78] report a median coverage of 3.7%
across 22k Python projects). In contrast, PyTy addresses statically detectable

6.8 | Automated Program Repair 157

errors, and hence, is limited to errors that are statically detectable. In practice,
we expect PyTER and PyTy to complement each other.
Beyond type errors, several techniques for fixing other kinds of static analysis

warnings have been proposed [10, 57, 158], which are also complementary
to our work in Chapter 5. Recently, many pre-trained language models for
source code have been proposed and achieve promising results [258], including
CodeBERT [59], GraphCodeBERT [83], CodeT5 [263] and CodeTrans [55].
These models are pre-trained on large datasets and then fine-tuned on different
tasks. We base our APR tool (Chapter 5) on TFix because it is already trained on
an APR task. Another work that applies transfer learning in language models
of code is VRepair [36]. They pre-train a transformer model on a large bug
fix dataset for C, and then fine-tune it with a vulnerability fix dataset for C.
Chapter 5 shows that the benefits of transferring knowledge are not only between
different fixing tasks, but also between different programming languages (from
JavaScript to Python).

158 6 | Related work

Ch
ap
te
r 7

Conclusions and Future Work

Software evolution involves the growth and adaptation of software, including bug
fixes, security patches, new programming languages features, and user-driven
improvements. Effectively understanding and managing software evolution is
crucial for ensuring sustained functionality and reliability in the field of software
engineering. We focus on challenges that include the need for better information
retrieval methods for software evolution (C-1), understanding developers’ code
changes patterns (C-2), and automating code changes for bug fixes (C-3). This
dissertation argues that we can address these challenges with a mix of program
analysis, information retrieval, and deep learning. Our contributions impact
developers and researchers, with a comprehensive survey on code search guiding
researchers on the state of the art (Chapter 2), DiffSearch offering a fast and
scalable approach to search for code changes (Chapter 3), a large scale study
on the evolution of type annotations in Python with insights for the developers
and researchers (Chapter 4) and PyTy surpassing state-of-the-art techniques for
automated program repair of Python type errors (Chapter 5). Collectively, these
contributions advance understanding and practical capabilities in the field of
software evolution.

159

7.1 Reflections and Lessons

During the work on this dissertation, we engaged in reflections, discussing valu-
able insights for the software engineering community. Here is a comprehensive
summary of the lessons we learned:

• Tools Adoption from Developers is Challenging. One notable lesson
is the challenges associated with developers adopting new tools. In the
context of code search, the adoption of novel tools, such as those discussed
in Chapter 2, can encounter resistance. In fact, even if there are so many
code search approaches, most of the developers use only simple text to
text code search. Bridging the gap between tool functionality and user
adoption requires careful consideration of usability, integration, and user
experience.

• Code Changes are Repetitive. The observation that code changes are
repetitive (C-2) underlines the importance of approaches to find and re-
use these patterns. In the realm of APR (C-3), recognizing and learning
from repetitive patterns in code changes, as highlighted by PyTy, can
significantly contribute to optimizing development workflows and reducing
the manual workload.

• The Usage of New Programming Language Features is Slow. Acknowl-
edging the challenges in adopting new programming language features
is linked with the need to understand developers’ patterns code changes
(C-2). Integrating insights from more empirical studies on code changes
can help in understanding how developers navigate and adapt to evolv-
ing language features, helping them with more effective support and
guidelines.

• Transfer Learning is Effective. Another lesson from our journey is about
the effectiveness of transfer learning. Leveraging transfer learning and
a pre-trained model, as discussed in the context of PyTy, showcases its
potential in improving automated program repair techniques without
training a model from scratch and collecting a huge dataset.

160 7 | Conclusions and Future Work

• Rule-based and Data-driven Approaches Can Work Together. The
synergy between rule-based and data-driven approaches aligns with the
goal of addressing challenges in software evolution. Recognizing the
compatibility of approaches like program analysis and deep learning, as
advocated for PyTy where we use a type checker using traditional static
analysis and a model based on T5, shows possibilities for hybrid solutions
that can solve more software evolution challenges.

• LLMs are Not the Solution to Everything. While Large Language Models
(LLMs) demonstrate remarkable capabilities, they still have limitations. As
highlighted in Chapter 5, where PyTy performs better than GPT-4. LLMs
are a valuable tool in the developer’s and researcher’s arsenal but may
not be a universal solution, reinforcing the importance of hybrid solutions.
However, the LLM potential is huge and researchers should continue to
study them to improve the field of software evolution.

7.2 Research Vision and Future Work

Even if our last lesson in the previous section emphasizes the limitations of
LLMs, they have opened new possibilities for code generation and automatic
program repair in software development. However, the automatically generated
code often needs to be carefully tested to ensure correctness and adherence
to coding standards. Our future work will focus on addressing the challenges
and opportunities associated with automatic program repair, bug detections and
testing code generated by large language models using hybrid approaches also
based on rule-based approaches. Some future work ideas are:

• Automatic Program Repair with LLMs. We can focus on AI prompt
engineering to fix linter errors, for example detected by ErrorProne,59

using LLMs with fine-tuning and few-shots prompting. The few-shot
prompting can use DiffSearch to retrieve old useful fixes and help the
model to provide a better fix.

59https://errorprone.info/

7.2 | Research Vision and Future Work 161

https://errorprone.info/

• Bug Detection with LLMs: As part of future work, we can explore the
potential of LLMs for bug detection presents an interesting opportunity.
For example, we can start from standard datasets such as Defect4J [112]
and investigate how LLMs can effectively identify bugs. Additionally, fine-
tuning existing LLMs for bug detection could contribute to the evolution
of more robust and context-aware bug identification systems.

• Automated Testing Techniques. We can explore automated testing tech-
niques for concurrent software systems [20] that leverage LLMs and pro-
gram analysis to verify the correctness of tests generated by LLMs. This will
involve developing novel testing approaches that can efficiently produce
oracles and validate specific test cases and requirements.

162 7 | Conclusions and Future Work

Bibliography

[1] A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman. Compilers: principles, techniques, &
tools. Pearson Education India, 2007 (cit. on p. 15).

[2] S. Akbar, A. Kak. ‘SCOR: Source Code Retrieval with Semantics and Order’. In:
2019 IEEE/ACM 16th International Conference on Mining Software Repositories
(MSR). IEEE. 2019, pp. 1–12 (cit. on pp. 20, 44).

[3] A. Alali, H.H. Kagdi, J. I. Maletic. ‘What’s a Typical Commit? A Characterization
of Open Source Software Repositories’. In: The 16th IEEE International Conference
on Program Comprehension, ICPC 2008, Amsterdam, The Netherlands, June 10-13,
2008. Ed. by R. L. Krikhaar, R. Lammel, C. Verhoef. IEEE Computer Society,
2008, pp. 182–191. url: https://doi.org/10.1109/ICPC.2008.24 (cit. on
p. 60).

[4] M. Allamanis, E. T. Barr, S. Ducousso, Z. Gao. ‘Typilus: Neural type hints’. In:
Proceedings of the 41st acm sigplan conference on programming language design
and implementation. 2020, pp. 91–105 (cit. on pp. 90, 116, 117, 120, 156).

[5] M. Allamanis, M. Brockschmidt, M. Khademi. ‘Learning to Represent Programs
with Graphs’. In: International Conference on Learning Representations (ICLR).
2018 (cit. on p. 135).

[6] J.-h. (An, A. Chaudhuri, J. S. Foster, M. Hicks. ‘Dynamic Inference of Static Types
for Ruby’. In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL ’11. Austin, Texas, USA: ACM, 2011,
pp. 459–472. url: http://doi.acm.org/10.1145/1926385.1926437 (cit.
on pp. 90, 156).

[7] C. Anderson, P. Giannini, S. Drossopoulou. ‘Towards Type Inference for JavaScript’.
In: ECOOP 2005 - Object-Oriented Programming. Ed. by A. P. Black. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2005, pp. 428–452 (cit. on pp. 90, 156).

[8] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, W. Pugh. ‘Using Static
Analysis to Find Bugs’. In: IEEE Software 25.5 (2008), pp. 22–29 (cit. on p. 4).

163

https://doi.org/10.1109/ICPC.2008.24
http://doi.acm.org/10.1145/1926385.1926437

[9] A. Babenko, V. Lempitsky. ‘Efficient indexing of billion-scale datasets of deep
descriptors’. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2016, pp. 2055–2063 (cit. on p. 32).

[10] J. Bader, A. Scott, M. Pradel, S. Chandra. ‘Getafix: Learning to fix bugs automati-
cally’. In: Proceedings of the ACM on Programming Languages 3.OOPSLA (2019),
pp. 1–27 (cit. on pp. 56, 83, 153, 158).

[11] S. Bajracharya, T. Ngo, E. Linstead, P. Rigor, Y. Dou, P. Baldi, C. Lopes. ‘Sourcerer:
a search engine for open source code’. In: International Conference on Software
Engineering (ICSE 2007). Citeseer. 2007 (cit. on pp. 34, 44, 58).

[12] S. K. Bajracharya, J. Ossher, C. V. Lopes. ‘Leveraging Usage Similarity for Effective
Retrieval of Examples in Code Repositories’. In: Proceedings of the Eighteenth ACM
SIGSOFT International Symposium on Foundations of Software Engineering. FSE
’10. Santa Fe, New Mexico, USA: Association for Computing Machinery, 2010,
pp. 157–166. url: https://doi.org/10.1145/1882291.1882316 (cit. on
pp. 20, 33, 37, 39, 44, 45).

[13] S. K. Bajracharya, C. V. Lopes. ‘Analyzing and mining a code search engine usage
log’. In: Empirical Software Engineering 17.4-5 (2012), pp. 424–466. url: https:
//doi.org/10.1007/s10664-010-9144-6 (cit. on pp. 47–50).

[14] S. K. Bajracharya, C. V. Lopes. ‘Mining search topics from a code search engine
usage log’. In: Proceedings of the 6th International Working Conference on Mining
Software Repositories, MSR 2009 (Co-located with ICSE), Vancouver, BC, Canada,
May 16-17, 2009, Proceedings. Ed. by M.W. Godfrey, J. Whitehead. IEEE Computer
Society, 2009, pp. 111–120. url: https://doi.org/10.1109/MSR.2009.
5069489 (cit. on pp. 33, 39).

[15] V. Balachandran. ‘Query by example in large-scale code repositories’. In: 2015
IEEE International Conference on Software Maintenance and Evolution (ICSME).
2015, pp. 467–476 (cit. on pp. 22, 33, 34, 37, 39, 44, 45).

[16] M. Barnett, C. Bird, J. Brunet, S. K. Lahiri. ‘Helping Developers Help Themselves:
Automatic Decomposition of Code Review Changesets’. In: 37th IEEE/ACM Inter-
national Conference on Software Engineering, ICSE 2015, Florence, Italy, May 16-24,
2015, Volume 1. Ed. by A. Bertolino, G. Canfora, S. G. Elbaum. IEEE Computer So-
ciety, 2015, pp. 134–144. url: https://doi.org/10.1109/ICSE.2015.35
(cit. on p. 60).

[17] R. Bavishi, H. Yoshida, M. R. Prasad. ‘Phoenix: Automated data-driven synthesis
of repairs for static analysis violations’. In: Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 2019, pp. 613–624 (cit. on p. 152).

164 Bibliography

https://doi.org/10.1145/1882291.1882316
https://doi.org/10.1007/s10664-010-9144-6
https://doi.org/10.1007/s10664-010-9144-6
https://doi.org/10.1109/MSR.2009.5069489
https://doi.org/10.1109/MSR.2009.5069489
https://doi.org/10.1109/ICSE.2015.35

[18] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger. ‘The R*-tree: An efficient
and robust access method for points and rectangles’. In: Proceedings of the 1990
ACM SIGMOD international conference on Management of data. 1990, pp. 322–331
(cit. on pp. 33, 39).

[19] B. Berabi, J. He, V. Raychev, M. Vechev. ‘Tfix: Learning to fix coding errors with a
text-to-text transformer’. In: International Conference on Machine Learning. PMLR.
2021, pp. 780–791 (cit. on pp. 123, 131, 135, 138).

[20] F. A. Bianchi, A. Margara, M. Pezzè. ‘A survey of recent trends in testing concurrent
software systems’. In: IEEE Transactions on Software Engineering 44.8 (2017),
pp. 747–783 (cit. on p. 162).

[21] J. Bogner, M. Merkel. ‘To type or not to type? a systematic comparison of the
software quality of javascript and typescript applications on github’. In: Proceedings
of the 19th International Conference on Mining Software Repositories. 2022, pp. 658–
669 (cit. on p. 155).

[22] J. Brandt, M. Dontcheva, M. Weskamp, S. R. Klemmer. ‘Example-centric program-
ming: integrating web search into the development environment’. In: Proceedings
of the 28th International Conference on Human Factors in Computing Systems, CHI
2010, Atlanta, Georgia, USA, April 10-15, 2010. Ed. by E. D. Mynatt, D. Schoner,
G. Fitzpatrick, S. E. Hudson, W. K. Edwards, T. Rodden. ACM, 2010, pp. 513–522.
url: https://doi.org/10.1145/1753326.1753402 (cit. on pp. 23, 53).

[23] S. Brin, L. Page. ‘The anatomy of a large-scale hypertextual web search engine’. In:
Computer networks and ISDN systems 30.1-7 (1998), pp. 107–117 (cit. on p. 31).

[24] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D.M. Ziegler, J. Wu, C. Winter, C. Hesse,
M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. Mc-
Candlish, A. Radford, I. Sutskever, D. Amodei. ‘Language Models are Few-Shot
Learners’. In: Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
H. Lin. 2020. url: https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html (cit. on p. 52).

[25] M. Bruch, M. Monperrus, M. Mezini. ‘Learning from examples to improve code
completion systems’. In: European Software Engineering Conference and Interna-
tional Symposium on Foundations of Software Engineering (ESEC/FSE). ACM, 2009,
pp. 213–222 (cit. on p. 17).

Bibliography 165

https://doi.org/10.1145/1753326.1753402
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

[26] R. P. L. Buse, W. Weimer. ‘Automatically documenting program changes’. In: Con-
ference on Automated Software Engineering (ASE). ACM, 2010, pp. 33–42 (cit. on
p. 151).

[27] R. Cabrera Lozoya, A. Baumann, A. Sabetta, M. Bezzi. ‘Commit2vec: Learning
distributed representations of code changes’. In: SN Computer Science 2.3 (2021),
pp. 1–16 (cit. on pp. 87, 153).

[28] J. Cambronero, H. Li, S. Kim, K. Sen, S. Chandra. ‘When deep learning met
code search’. In: Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019. Ed. by M. Dumas,
D. Pfahl, S. Apel, A. Russo. ACM, 2019, pp. 964–974. url: https://doi.org/
10.1145/3338906.3340458 (cit. on pp. 33, 36, 40, 45).

[29] Y. Chai, H. Zhang, B. Shen, X. Gu. ‘Cross-Domain Deep Code Search with Meta
Learning’. In: Proceedings of the 44th International Conference on Software Engi-
neering. ICSE ’22. Pittsburgh, Pennsylvania: Association for Computing Machinery,
2022, pp. 487–498. url: https://doi.org/10.1145/3510003.3510125
(cit. on pp. 20, 33–35, 41, 44).

[30] S. Chatterjee, S. Juvekar, K. Sen. ‘Sniff: A search engine for java using free-form
queries’. In: International Conference on Fundamental Approaches to Software
Engineering. Springer. 2009, pp. 385–400 (cit. on pp. 20, 21, 44, 46).

[31] A. Chen, E. Chou, J. Wong, A. Y. Yao, Q. Zhang, S. Zhang, A. Michail. ‘CVSSearch:
Searching through source code using CVS comments’. In: Proceedings IEEE Interna-
tional Conference on Software Maintenance. ICSM 2001. IEEE. 2001, pp. 364–373
(cit. on pp. 20, 21, 33, 35, 36, 44, 45).

[32] L. Chen, B. Xu, T. Zhou, X. Zhou. ‘A Constraint Based Bug Checking Approach
for Python’. In: Computer Software and Applications Conference (COMPSAC). IEEE,
2009, pp. 306–311 (cit. on p. 156).

[33] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan, H. Ed-
wards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov,
H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power,
L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert,
F. Chantzis, E. Barnes, A. Herbert-Voss, W.H. Guss, A. Nichol, A. Paino, N. Tezak,
J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr, J. Leike,
J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Mu-
rati, K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever,
W. Zaremba. ‘Evaluating Large Language Models Trained on Code’. In: CoRR
abs/2107.03374 (2021). arXiv: 2107.03374. url: https://arxiv.org/abs/
2107.03374 (cit. on pp. 23, 51, 54).

166 Bibliography

https://doi.org/10.1145/3338906.3340458
https://doi.org/10.1145/3338906.3340458
https://doi.org/10.1145/3510003.3510125
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374

[34] Q. Chen, M. Zhou. ‘A Neural Framework for Retrieval and Summarization of
Source Code’. In: Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. ASE 2018. Montpellier, France: Association for
Computing Machinery, 2018, pp. 826–831. url: https://doi.org/10.1145/
3238147.3240471 (cit. on pp. 20, 33, 36, 40, 44, 45).

[35] Z. Chen, S. Kommrusch, M. Tufano, L. Pouchet, D. Poshyvanyk, M. Monperrus.
‘SequenceR: Sequence-to-Sequence Learning for End-to-End Program Repair’. In:
IEEE Transactions on Software Engineering 47.9 (2019), pp. 1943–1959 (cit. on
p. 157).

[36] Z. Chen, S. J. Kommrusch, M. Monperrus. ‘Neural Transfer Learning for Repairing
Security Vulnerabilities in C Code’. In: IEEE Transactions on Software Engineering
49.1 (2022), pp. 147–165 (cit. on p. 158).

[37] Y.W. Chow, L. Di Grazia, M. Pradel. ‘PyTy: Repairing Static Type Errors in Python’.
In: 2024 IEEE/ACM 46th International Conference on Software Engineering (ICSE).
IEEE Computer Society (cit. on p. 10).

[38] J. Cohen. ‘A coefficient of agreement for nominal scales’. In: Educational and
psychological measurement 20.1 (1960), pp. 37–46 (cit. on p. 139).

[39] B. Dagenais, M. P. Robillard. ‘Recommending Adaptive Changes for Framework
Evolution’. In: ACMTransactions on Software Engineering andMethodology (TOSEM)
20.4 (2011), pp. 1–35 (cit. on p. 152).

[40] Y. David, E. Yahav. ‘Tracelet-Based Code Search in Executables’. In: Acm Sigplan
Notices 49.6 (2014), pp. 349–360 (cit. on pp. 23, 33, 34, 37, 42, 44, 45).

[41] L. Di Grazia, P. Bredl, M. Pradel. ‘DiffSearch: A Scalable and Precise Search Engine
for Code Changes’. In: IEEE Transactions on Software Engineering 49.4 (2023),
pp. 2366–2380 (cit. on pp. 10, 50, 79).

[42] L. Di Grazia, M. Pradel. ‘Code Search: A Survey of Techniques for Finding Code’. In:
ACM Computing Surveys (2022). url: https://doi.org/10.1145/3565971
(cit. on pp. 10, 62).

[43] L. Di Grazia, M. Pradel. ‘The Evolution of Type Annotations in Python: An Empirical
Study’. In: Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. ESEC/FSE
2022. Singapore, Singapore: Association for ComputingMachinery, 2022, pp. 209–
220. url: https://doi.org/10.1145/3540250.3549114 (cit. on pp. 10,
120, 124, 125, 148, 149).

Bibliography 167

https://doi.org/10.1145/3238147.3240471
https://doi.org/10.1145/3238147.3240471
https://doi.org/10.1145/3565971
https://doi.org/10.1145/3540250.3549114

[44] T. Diamantopoulos, G. Karagiannopoulos, A. L. Symeonidis. ‘Codecatch: Extracting
Source Code Snippets from Online Sources’. In: Proceedings of the 6th International
Workshop on Realizing Artificial Intelligence Synergies in Software Engineering.
RAISE ’18. Gothenburg, Sweden: Association for Computing Machinery, 2018,
pp. 21–27. url: https://doi.org/10.1145/3194104.3194107 (cit. on
pp. 20, 33, 34, 36, 39, 44).

[45] E. Dinella, H. Dai, Z. Li, M. Naik, L. Song, K. Wang. ‘Hoppity: Learning graph
transformations to detect and fix bugs in programs’. In: International Conference
on Learning Representations (ICLR). 2020 (cit. on pp. 135, 157).

[46] B. Dit, M. Revelle, M. Gethers, D. Poshyvanyk. ‘Feature location in source code: a
taxonomy and survey’. In: Journal of software: Evolution and Process 25.1 (2013),
pp. 53–95 (cit. on p. 18).

[47] J. Dolby, A. Shinnar, A. Allain, J. Reinen. ‘Ariadne: analysis for machine learning
programs’. In: Proceedings of the 2Nd ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages. 2018, pp. 1–10 (cit. on p. 156).

[48] L. Du, X. Shi, Y. Wang, E. Shi, S. Han, D. Zhang. ‘Is a Single Model Enough?
MuCoS: A Multi-Model Ensemble Learning Approach for Semantic Code Search’.
In: CIKM ’21: The 30th ACM International Conference on Information and Knowledge
Management, Virtual Event, Queensland, Australia, November 1 - 5, 2021. Ed. by
G. Demartini, G. Zuccon, J. S. Culpepper, Z. Huang, H. Tong. ACM, 2021, pp. 2994–
2998. url: https://doi.org/10.1145/3459637.3482127 (cit. on pp. 20,
40).

[49] F. A. Durão, T. A. Vanderlei, E. S. Almeida, S. R. de L. Meira. ‘Applying a Semantic
Layer in a Source Code Search Tool’. In: Proceedings of the 2008 ACM Symposium
on Applied Computing. SAC ’08. Fortaleza, Ceara, Brazil: Association for Computing
Machinery, 2008, pp. 1151–1157. url: https://doi.org/10.1145/1363686.
1363952 (cit. on p. 20).

[50] ECMA. Standard ECMA-262, ECMAScript Language Specification, 5.1 Edition. Eu-
ropean Computer Manufacturers Association (ECMA), 2011 (cit. on p. 15).

[51] A. Eghbali, M. Pradel. ‘DynaPyt: A Dynamic Analysis Framework for Python’.
In: ESEC/FSE ’22: 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM, 2022 (cit. on p. 156).

[52] A. Eghbali, M. Pradel. ‘No Strings Attached: An Empirical Study of String-related
Software Bugs’. In: 35th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2020, Melbourne, Australia, September 21-25, 2020. IEEE, 2020,
pp. 956–967. url: https://ieeexplore.ieee.org/document/9286132
(cit. on p. 56).

[53] B. Elasticsearch. ‘Elasticsearch’. In: software], version 6.1 (2018) (cit. on p. 4).

168 Bibliography

https://doi.org/10.1145/3194104.3194107
https://doi.org/10.1145/3459637.3482127
https://doi.org/10.1145/1363686.1363952
https://doi.org/10.1145/1363686.1363952
https://ieeexplore.ieee.org/document/9286132

[54] B. Elkarablieh, S. Khurshid, D. Vu, K. S. McKinley. ‘Starc: static analysis for efficient
repair of complex data’. In: Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). ACM, 2007, pp. 387–404 (cit. on p. 4).

[55] A. Elnaggar, W. Ding, L. Jones, T. Gibbs, T. Feher, C. Angerer, S. Severini, F. Matthes,
B. Rost. ‘CodeTrans: Towards Cracking the Language of Silicon’s Code Through
Self-Supervised Deep Learning and High Performance Computing’. In: arXiv
preprint arXiv:2104.02443 (2021) (cit. on p. 158).

[56] S. Erdweg, T. Szabó, A. Pacak. ‘Concise, Type-Safe, and Efficient Structural Diffing’.
In: PLDI. 2021 (cit. on pp. 58, 152).

[57] K. Etemadi, N. Harrand, S. Larsén, H. Adzemovic, H. L. Phu, A. Verma, F. Madeiral,
D. Wikström, M. Monperrus. ‘Sorald: Automatic Patch Suggestions for Sonar-
Qube Static Analysis Violations’. In: IEEE Transactions on Dependable and Secure
Computing 20.4 (2023), pp. 2794–2810 (cit. on p. 158).

[58] J. Falleri, F. Morandat, X. Blanc, M. Martinez, M. Monperrus. ‘Fine-grained and
accurate source code differencing’. In: ACM/IEEE International Conference on Au-
tomated Software Engineering, ASE ’14, Vasteras, Sweden - September 15 - 19, 2014.
2014, pp. 313–324. url: https://doi.org/10.1145/2642937.2642982
(cit. on pp. 58, 152).

[59] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu,
D. Jiang, M. Zhou. ‘CodeBERT: A Pre-Trained Model for Programming and Natural
Languages’. In: Findings of the Association for Computational Linguistics: EMNLP
2020, Online Event, 16-20 November 2020. Ed. by T. Cohn, Y. He, Y. Liu. Vol. EMNLP
2020. Findings of ACL. Association for Computational Linguistics, 2020, pp. 1536–
1547. url: https://doi.org/10.18653/v1/2020.findings-emnlp.139
(cit. on pp. 41, 54, 158).

[60] C. Finn, P. Abbeel, S. Levine. ‘Model-Agnostic Meta-Learning for Fast Adaptation
of Deep Networks’. In: Proceedings of the 34th International Conference on Machine
Learning. Ed. by D. Precup, Y.W. Teh. Vol. 70. Proceedings of Machine Learning
Research. PMLR, 2017, pp. 1126–1135. url: https://proceedings.mlr.
press/v70/finn17a.html (cit. on p. 41).

[61] B. Fluri, M. Wuersch, M. PInzger, H. Gall. ‘Change distilling: Tree differencing
for fine-grained source code change extraction’. In: IEEE Transactions on software
engineering 33.11 (2007), pp. 725–743 (cit. on pp. 57, 58, 66, 152).

[62] Y. Fujiwara, N. Yoshida, E. Choi, K. Inoue. ‘Code-to-Code Search Based on Deep
Neural Network and Code Mutation’. In: 2019 IEEE 13th International Workshop
on Software Clones (IWSC). 2019, pp. 1–7 (cit. on pp. 22, 33, 34, 44).

Bibliography 169

https://doi.org/10.1145/2642937.2642982
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://proceedings.mlr.press/v70/finn17a.html
https://proceedings.mlr.press/v70/finn17a.html

[63] M. Furr, J. (An, J. S. Foster. ‘Profile-guided static typing for dynamic scripting
languages’. In: Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA). ACM, 2009, pp. 283–300 (cit. on pp. 90, 156).

[64] X. Gao, S. Barke, A. Radhakrishna, G. Soares, S. Gulwani, A. Leung, N. Nagappan,
A. Tiwari. ‘Feedback-driven semi-supervised synthesis of program transformations’.
In: Proc. ACM Program. Lang. 4.OOPSLA (2020), 219:1–219:30. url: https:
//doi.org/10.1145/3428287 (cit. on p. 58).

[65] Z. Gao, C. Bird, E. T. Barr. ‘To type or not to type: Quantifying detectable bugs
in JavaScript’. In: Proceedings of the 39th International Conference on Software
Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017. 2017, pp. 758–
769 (cit. on pp. 92, 114, 115, 155).

[66] V. C. Garcia, E. S. de Almeida, L. B. Lisboa, A. C. Martins, S. R. L. Meira, D. Lucredio,
R. P. d. M. Fortes. ‘Toward a Code Search Engine Based on the State-of-Art and
Practice’. In: 2006 13th Asia Pacific Software Engineering Conference (APSEC’06).
2006, pp. 61–70 (cit. on p. 18).

[67] E. Giger, M. Pinzger, H. C. Gall. ‘Comparing fine-grained source code changes
and code churn for bug prediction’. In: Proceedings of the 8th Working Conference
on Mining Software Repositories. 2011, pp. 83–92 (cit. on pp. 151, 152).

[68] GitHub. The 2020 State of the Octoverse. https://octoverse.github.com/.
2021 (cit. on p. 14).

[69] B. G. Glaser, A. L. Strauss, E. Strutzel. ‘The discovery of grounded theory; strategies
for qualitative research’. In: Nursing research 17.4 (1968), p. 364 (cit. on p. 127).

[70] M.W. Godfrey, D.M. German. ‘The past, present, and future of software evolution’.
In: 2008 Frontiers of Software Maintenance. IEEE. 2008, pp. 129–138 (cit. on
p. 1).

[71] I. Goodfellow, Y. Bengio, A. Courville. Deep learning. MIT press, 2016 (cit. on
p. 4).

[72] A. Gosain, G. Sharma. ‘Static analysis: A survey of techniques and tools’. In:
Intelligent Computing and Applications: Proceedings of the International Conference
on ICA, 22-24 December 2014. Springer. 2015, pp. 581–591 (cit. on p. 4).

[73] J. Gosling, W.N. Joy, G. L. S. Jr. The Java Language Specification. Addison-Wesley,
1996 (cit. on p. 15).

[74] O. Gospodnetic, E. Hatcher, M. McCandless. Lucene in action. Simon and Schuster,
2010 (cit. on p. 4).

[75] C. L. Goues, M. Pradel, A. Roychoudhury. ‘Automated program repair’. In: Com-
munications of the ACM 62.12 (2019), pp. 56–65 (cit. on p. 157).

170 Bibliography

https://doi.org/10.1145/3428287
https://doi.org/10.1145/3428287
https://octoverse.github.com/

[76] L. D. Grazia, M. Pradel. sola-st/PythonTypeAnnotationStudy: v1.0. Version v1.0.
Sept. 2022. url: https://doi.org/10.5281/zenodo.7082252 (cit. on
p. 94).

[77] M. Grechanik, C. McMillan, L. DeFerrari, M. Comi, S. Crespi-Reghizzi, D. Poshy-
vanyk, C. Fu, Q. Xie, C. Ghezzi. ‘An empirical investigation into a large-scale Java
open source code repository’. In: Symposium on Empirical Software Engineering
and Measurement (ESEM). 2010 (cit. on p. 17).

[78] M. Gruber, S. Lukasczyk, F. Kroiß, G. Fraser. ‘An empirical study of flaky tests
in python’. In: 2021 14th IEEE Conference on Software Testing, Verification and
Validation (ICST). IEEE. 2021, pp. 148–158 (cit. on p. 157).

[79] F. Grund, S. A. Chowdhury, N. Bradley, B. Hall, R. Holmes. ‘CodeShovel: Con-
structing Method-Level Source Code Histories’. In: ICSE. 2021 (cit. on pp. 151,
153).

[80] J. Gu, Z. Chen, M. Monperrus. ‘Multimodal Representation for Neural Code Search’.
In: IEEE International Conference on Software Maintenance and Evolution, ICSME
2021, Luxembourg, September 27 - October 1, 2021. IEEE, 2021, pp. 483–494.
url: https://doi.org/10.1109/ICSME52107.2021.00049 (cit. on pp. 20,
41).

[81] R. Gu, G. Jin, L. Song, L. Zhu, S. Lu. ‘What change history tells us about thread
synchronization’. In: ESEC/FSE. 2015, pp. 426–438 (cit. on p. 152).

[82] X. Gu, H. Zhang, S. Kim. ‘Deep Code Search’. In: ICSE. 2018 (cit. on pp. 20, 33,
35, 37, 40, 44, 52, 58).

[83] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan, A. Svyatkovskiy,
S. Fu, M. Tufano, S. K. Deng, C. B. Clement, D. Drain, N. Sundaresan, J. Yin,
D. Jiang, M. Zhou. ‘GraphCodeBERT: Pre-training Code Representations with
Data Flow’. In: 9th International Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. url: https:
//openreview.net/forum?id=jLoC4ez43PZ (cit. on pp. 41, 54, 158).

[84] T. Gvero, V. Kuncak. ‘Synthesizing Java expressions from free-form queries’. In:
Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH
2015, Pittsburgh, PA, USA, October 25-30, 2015. Ed. by J. Aldrich, P. Eugster. ACM,
2015, pp. 416–432. url: https://doi.org/10.1145/2814270.2814295
(cit. on p. 17).

[85] A. Habib, M. Pradel. ‘How Many of All Bugs Do We Find? A Study of Static Bug
Detectors’. In: ASE. 2018 (cit. on pp. 56, 83).

Bibliography 171

https://doi.org/10.5281/zenodo.7082252
https://doi.org/10.1109/ICSME52107.2021.00049
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://doi.org/10.1145/2814270.2814295

[86] E. Hajiyev, M. Verbaere, O. de Moor. ‘codeQuest: Scalable Source Code Queries
with Datalog’. In: ECOOP 2006 - Object-Oriented Programming, 20th European Con-
ference, Nantes, France, July 3-7, 2006, Proceedings. Ed. by D. Thomas. Vol. 4067.
Lecture Notes in Computer Science. Springer, 2006, pp. 2–27. url: https:
//doi.org/10.1007/11785477%5C_2 (cit. on pp. 24, 33, 34, 37, 42).

[87] S. Hanenberg. ‘An experiment about static and dynamic type systems: doubts
about the positive impact of static type systems on development time’. In: Con-
ference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA). 2010, pp. 22–35 (cit. on pp. 92, 115).

[88] S. Hanenberg, S. Kleinschmager, R. Robbes, É. Tanter, A. Stefik. ‘An empirical
study on the impact of static typing on software maintainability’. In: Empirical
Software Engineering 19.5 (2014), pp. 1335–1382 (cit. on p. 92).

[89] M. Hashimoto, A. Mori. ‘Diff/TS: A Tool for Fine-Grained Structural Change
Analysis’. In: WCRE 2008, Proceedings of the 15th Working Conference on Reverse
Engineering, Antwerp, Belgium, October 15-18, 2008. 2008, pp. 279–288. url:
https://doi.org/10.1109/WCRE.2008.44 (cit. on p. 152).

[90] M. Hashimoto, A. Mori, T. Izumida. ‘Automated patch extraction via syntax- and
semantics-aware Delta debugging on source code changes’. In: Proceedings of
the 2018 ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018,
Lake Buena Vista, FL, USA, November 04-09, 2018. 2018, pp. 598–609. url:
https://doi.org/10.1145/3236024.3236047 (cit. on pp. 151, 152).

[91] M. Hassan, C. Urban, M. Eilers, P. Müller. ‘MaxSMT-Based Type Inference for
Python 3’. In: International Conference on Computer Aided Verification. Springer.
2018, pp. 12–19 (cit. on pp. 90, 156).

[92] V. J. Hellendoorn, C. Bird, E. T. Barr, M. Allamanis. ‘Deep learning type inference’.
In: ESEC/FSE. Ed. by G. T. Leavens, A. Garcia, C. S. Pasareanu. ACM, 2018, pp. 152–
162. url: https://doi.org/10.1145/3236024.3236051 (cit. on pp. 90, 94,
116, 117, 120, 156).

[93] S. Herfert, J. Patra, M. Pradel. ‘Automatically Reducing Tree-Structured Test
Inputs’. In: ASE. 2017 (cit. on p. 139).

[94] K. Herzig, S. Just, A. Zeller. ‘The impact of tangled code changes on defect
prediction models’. In: Empir. Softw. Eng. 21.2 (2016), pp. 303–336. url: https:
//doi.org/10.1007/s10664-015-9376-6 (cit. on p. 60).

[95] E. Hill, L. Pollock, K. Vijay-Shanker. ‘Automatically capturing source code context
of NL-queries for software maintenance and reuse’. In: 2009 IEEE 31st Interna-
tional Conference on Software Engineering. 2009, pp. 232–242 (cit. on pp. 20,
21).

172 Bibliography

https://doi.org/10.1007/11785477%5C_2
https://doi.org/10.1007/11785477%5C_2
https://doi.org/10.1109/WCRE.2008.44
https://doi.org/10.1145/3236024.3236047
https://doi.org/10.1145/3236024.3236051
https://doi.org/10.1007/s10664-015-9376-6
https://doi.org/10.1007/s10664-015-9376-6

[96] E. Hill, L. Pollock, K. Vijay-Shanker. ‘Improving source code search with natural
language phrasal representations of method signatures’. In: 2011 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE 2011). IEEE.
2011, pp. 524–527 (cit. on pp. 20, 21).

[97] T. Hoang, H. K. Dam, Y. Kamei, D. Lo, N. Ubayashi. ‘DeepJIT: an end-to-end deep
learning framework for just-in-time defect prediction’. In: Proceedings of the 16th
International Conference on Mining Software Repositories, MSR 2019, 26-27 May
2019, Montreal, Canada. 2019, pp. 34–45. url: https://doi.org/10.1109/
MSR.2019.00016 (cit. on pp. 151, 152).

[98] T. Hoang, H. J. Kang, D. Lo, J. Lawall. ‘Cc2vec: Distributed representations of
code changes’. In: Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering. 2020, pp. 518–529 (cit. on pp. 87, 153).

[99] R. Holmes, G. C. Murphy. ‘Using Structural Context to Recommend Source Code
Examples’. In: Proceedings of the 27th International Conference on Software En-
gineering. ICSE ’05. St. Louis, MO, USA: Association for Computing Machinery,
2005, pp. 117–125. url: https://doi.org/10.1145/1062455.1062491
(cit. on pp. 23, 33, 34, 38, 44).

[100] J. Huang, D. Tang, L. Shou, M. Gong, K. Xu, D. Jiang, M. Zhou, N. Duan. ‘CoSQA:
20, 000+ Web Queries for Code Search and Question Answering’. In: Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing, ACL/IJCNLP
2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021. Ed. by C. Zong,
F. Xia, W. Li, R. Navigli. Association for Computational Linguistics, 2021, pp. 5690–
5700. url: https://doi.org/10.18653/v1/2021.acl-long.442 (cit. on
p. 53).

[101] H. Husain, H. Wu, T. Gazit, M. Allamanis, M. Brockschmidt. ‘CodeSearchNet Chal-
lenge: Evaluating the State of Semantic Code Search’. In: CoRR abs/1909.09436
(2019). arXiv: 1909.09436. url: http://arxiv.org/abs/1909.09436 (cit.
on pp. 15, 33, 34, 40, 44, 53).

[102] H. Husain, H.-H. Wu. ‘How to create natural language semantic search for arbitrary
objects with deep learning’. In: Retrieved November 5 (2018), p. 2019 (cit. on
p. 40).

[103] K. Inoue, Y. Miyamoto, D.M. German, T. Ishio. ‘Code clone matching: A practical
and effective approach to find code snippets’. In: arXiv preprint arXiv:2003.05615
(2020) (cit. on pp. 14, 25, 33, 34, 36, 154).

[104] ISO / IEC 14882 international standard - first edition 1998-09-01: Programming
languages C++. ISO, 1998 (cit. on p. 15).

Bibliography 173

https://doi.org/10.1109/MSR.2019.00016
https://doi.org/10.1109/MSR.2019.00016
https://doi.org/10.1145/1062455.1062491
https://doi.org/10.18653/v1/2021.acl-long.442
https://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436

[105] D. Janzen, K. D. Volder. ‘Navigating and querying code without getting lost’.
In: Proceedings of the 2nd International Conference on Aspect-Oriented Software
Development, AOSD 2003, Boston, Massachusetts, USA, March 17-21, 2003. Ed. by
W.G. Griswold, M. Aksit. ACM, 2003, pp. 178–187. url: https://doi.org/
10.1145/643603.643622 (cit. on p. 24).

[106] S.H. Jensen, A. Møller, P. Thiemann. ‘Type Analysis for JavaScript’. In: Symposium
on Static Analysis (SAS). Springer, 2009, pp. 238–255 (cit. on pp. 90, 156).

[107] L. Jiang, G. Misherghi, Z. Su, S. Glondu. ‘Deckard: Scalable and accurate tree-
based detection of code clones’. In: 29th International Conference on Software
Engineering (ICSE’07). IEEE. 2007, pp. 96–105 (cit. on pp. 58, 154).

[108] N. Jiang, K. Liu, T. Lutellier, L. Tan. ‘Impact of code language models on automated
program repair’. In: Proceedings of the 45th International Conference on Software
Engineering (ICSE 2023). Association for Computing Machinery. 2023 (cit. on
pp. 146, 157).

[109] R. Jiang, Z. Chen, Z. Zhang, Y. Pei, M. Pan, T. Zhang. ‘[Research Paper] Semantics-
Based Code Search Using Input/Output Examples’. In: 18th IEEE International
Working Conference on Source Code Analysis andManipulation, SCAM 2018, Madrid,
Spain, September 23-24, 2018. IEEE Computer Society, 2018, pp. 92–102. url:
https://doi.org/10.1109/SCAM.2018.00018 (cit. on pp. 26, 33, 35, 43,
44, 46).

[110] W. Jin, D. Zhong, Z. Ding, M. Fan, T. Liu. ‘Where to Start: Studying Type Annota-
tion Practices in Python’. In: ASE. 2021 (cit. on p. 155).

[111] J. Johnson, M. Douze, H. Jégou. ‘Billion-scale similarity search with GPUs’. In:
IEEE Transactions on Big Data (2019) (cit. on pp. 62, 68, 73, 76).

[112] R. Just, D. Jalali, M.D. Ernst. ‘Defects4J: A Database of Existing Faults to Enable
Controlled Testing Studies for Java Programs’. In: Proceedings of the 2014 Inter-
national Symposium on Software Testing and Analysis. ISSTA 2014. San Jose, CA,
USA: Association for Computing Machinery, 2014, pp. 437–440. url: https:
//doi.org/10.1145/2610384.2628055 (cit. on p. 162).

[113] H.H. Kagdi, M. L. Collard, J. I. Maletic. ‘A survey and taxonomy of approaches for
mining software repositories in the context of software evolution’. In: J. Softw.
Maintenance Res. Pract. 19.2 (2007), pp. 77–131. url: https://doi.org/10.
1002/smr.344 (cit. on p. 17).

[114] T. Kamiya, S. Kusumoto, K. Inoue. ‘CCFinder: a multilinguistic token-based code
clone detection system for large scale source code’. In: IEEE Transactions on
Software Engineering 28.7 (2002), pp. 654–670 (cit. on pp. 58, 154).

174 Bibliography

https://doi.org/10.1145/643603.643622
https://doi.org/10.1145/643603.643622
https://doi.org/10.1109/SCAM.2018.00018
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1002/smr.344
https://doi.org/10.1002/smr.344

[115] R.-M. Karampatsis, C. Sutton. ‘How often do single-statement bugs occur? the
manysstubs4j dataset’. In: Proceedings of the 17th International Conference on
Mining Software Repositories. 2020, pp. 573–577 (cit. on pp. 74, 83, 84).

[116] D. Kawrykow, M. P. Robillard. ‘Non-essential changes in version histories’. In:
2011 33rd International Conference on Software Engineering (ICSE). IEEE. 2011,
pp. 351–360 (cit. on pp. 57, 60).

[117] Y. Ke, K. T. Stolee, C. Le Goues, Y. Brun. ‘Repairing programs with semantic
code search (t)’. In: 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE. 2015, pp. 295–306 (cit. on p. 26).

[118] J. D.M.-W.C. Kenton, L. K. Toutanova. ‘Bert: Pre-training of deep bidirectional
transformers for language understanding’. In: 1 (2019), p. 2 (cit. on p. 41).

[119] A. Ketkar, N. Tsantalis, D. Dig. ‘Understanding type changes in java’. In: Proceedings
of the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 2020, pp. 629–641 (cit. on
p. 153).

[120] M. Khalifa. ‘Semantic Source Code Search: A Study of the Past and a Glimpse at
the Future’. In: CoRR abs/1908.06738 (2019). arXiv: 1908.06738. url: http:
//arxiv.org/abs/1908.06738 (cit. on p. 18).

[121] F. Khan, B. Chen, D. Varro, S. Mcintosh. ‘An Empirical Study of Type-Related
Defects in Python Projects’. In: IEEE Transactions on Software Engineering (2021)
(cit. on pp. 92, 114, 115, 155).

[122] W.M. Khoo, A. Mycroft, R. Anderson. ‘Rendezvous: A search engine for binary
code’. In: 2013 10th Working Conference on Mining Software Repositories (MSR).
2013, pp. 329–338 (cit. on pp. 23, 33, 34, 36, 39).

[123] D. Kim, J. Nam, J. Song, S. Kim. ‘Automatic patch generation learned from human-
written patches.’ In: International Conference on Software Engineering (ICSE). 2013,
pp. 802–811 (cit. on p. 157).

[124] K. Kim, D. Kim, T. F. Bissyandé, E. Choi, L. Li, J. Klein, Y. L. Traon. ‘FaCoY: a
code-to-code search engine’. In: Proceedings of the 40th International Conference
on Software Engineering. 2018, pp. 946–957 (cit. on pp. 22, 23, 33, 37, 39, 44,
46, 58).

[125] S. Kim, E. J.W. Jr., Y. Zhang. ‘Classifying Software Changes: Clean or Buggy?’
In: IEEE Transactions on Software Engineering 34.2 (2008), pp. 181–196 (cit. on
p. 153).

[126] A. J. Ko, B. A. Myers, M. J. Coblenz, H.H. Aung. ‘An Exploratory Study of How
Developers Seek, Relate, and Collect Relevant Information during Software Main-
tenance Tasks’. In: IEEE Trans. Software Eng. 32.12 (2006), pp. 971–987. url:
https://doi.org/10.1109/TSE.2006.116 (cit. on pp. 47–49).

Bibliography 175

https://arxiv.org/abs/1908.06738
http://arxiv.org/abs/1908.06738
http://arxiv.org/abs/1908.06738
https://doi.org/10.1109/TSE.2006.116

[127] T. Kudo, J. Richardson. ‘SentencePiece: A simple and language independent
subword tokenizer and detokenizer for Neural Text Processing’. In: Conference on
Empirical Methods in Natural Language Processing. 2018 (cit. on p. 136).

[128] J. R. Landis, G. G. Koch. ‘The Measurement of Observer Agreement for Categorical
Data’. In: Biometrics 33.1 (1977), pp. 159–174. url: http://www.jstor.org/
stable/2529310 (visited on 01/23/2023) (cit. on p. 139).

[129] J. Lawall, Q. Lambert, G. Muller. ‘Prequel: A patch-like query language for commit
history search’. PhD thesis. Inria Paris, 2016 (cit. on pp. 25, 50).

[130] J. Lawall, G. Muller. ‘Coccinelle: 10 Years of Automated Evolution in the Linux
Kernel’. In: 2018 USENIX Annual Technical Conference, USENIX ATC 2018, Boston,
MA, USA, July 11-13, 2018. Ed. by H. S. Gunawi, B. Reed. USENIX Association,
2018, pp. 601–614. url: https://www.usenix.org/conference/atc18/
presentation/lawall (cit. on pp. 4, 25, 73).

[131] J. Lawall, D. Palinski, L. Gnirke, G. Muller. ‘Fast and precise retrieval of forward
and back porting information for Linux device drivers’. In: 2017 USENIX Annual
Technical Conference (USENIX ATC 17). 2017, pp. 15–26 (cit. on pp. 57, 66).

[132] X.D. Le, D. Lo, C. Le Goues. ‘History Driven Program Repair’. In: IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengineering, SANER
2016, Suita, Osaka, Japan, March 14-18, 2016 - Volume 1. 2016, pp. 213–224.
url: https://doi.org/10.1109/SANER.2016.76 (cit. on p. 153).

[133] C. Le Goues, T. Nguyen, S. Forrest, W. Weimer. ‘GenProg: A Generic Method for
Automatic Software Repair’. In: IEEE Trans. Software Eng. 38.1 (2012), pp. 54–72
(cit. on p. 157).

[134] C. Le Goues, M. Pradel, A. Roychoudhury. ‘Automated program repair’. In: Com-
mun. ACM 62.12 (2019), pp. 56–65. url: https://doi.org/10.1145/
3318162 (cit. on pp. 56, 122, 146).

[135] C. Leacock, M. Chodorow. ‘Combining local context and WordNet similarity for
word sense identification’. In: WordNet: An electronic lexical database 49.2 (1998),
pp. 265–283 (cit. on p. 30).

[136] K. Lee, M. Chang, K. Toutanova. ‘Latent Retrieval for Weakly Supervised Open
Domain Question Answering’. In: Proceedings of the 57th Conference of the Asso-
ciation for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers. Ed. by A. Korhonen, D. R. Traum, L. Marquez.
Association for Computational Linguistics, 2019, pp. 6086–6096. url: https:
//doi.org/10.18653/v1/p19-1612 (cit. on p. 52).

[137] M. Lee, S. Hwang, S. Kim. ‘Integrating code search into the development session’.
In: 2011 IEEE 27th International Conference on Data Engineering. 2011, pp. 1336–
1339 (cit. on pp. 22, 33, 34, 45).

176 Bibliography

http://www.jstor.org/stable/2529310
http://www.jstor.org/stable/2529310
https://www.usenix.org/conference/atc18/presentation/lawall
https://www.usenix.org/conference/atc18/presentation/lawall
https://doi.org/10.1109/SANER.2016.76
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3318162
https://doi.org/10.18653/v1/p19-1612
https://doi.org/10.18653/v1/p19-1612

[138] M.-W. Lee, J.-W. Roh, S.-w. Hwang, S. Kim. ‘Instant Code Clone Search’. In: Pro-
ceedings of the Eighteenth ACM SIGSOFT International Symposium on Foundations
of Software Engineering. FSE ’10. Santa Fe, New Mexico, USA: Association for
Computing Machinery, 2010, pp. 167–176. url: https://doi.org/10.1145/
1882291.1882317 (cit. on pp. 22, 33, 34, 39, 45).

[139] M. Lehman, J. C. Fernáandez-Ramil. ‘Software evolution’. In: Software evolution
and feedback: Theory and practice (2006), pp. 7–40 (cit. on p. 1).

[140] O. A. L. Lemos, S. K. Bajracharya, J. Ossher, P. C. Masiero, C. V. Lopes. ‘A test-
driven approach to code search and its application to the reuse of auxiliary
functionality’. In: Inf. Softw. Technol. 53.4 (2011), pp. 294–306. url: https:
//doi.org/10.1016/j.infsof.2010.11.009 (cit. on pp. 26, 44).

[141] O. A. L. Lemos, S. K. Bajracharya, J. Ossher, R. S. Morla, P. C. Masiero, P. Baldi,
C. V. Lopes. ‘CodeGenie: using test-cases to search and reuse source code’. In:
22nd IEEE/ACM International Conference on Automated Software Engineering (ASE
2007), November 5-9, 2007, Atlanta, Georgia, USA. Ed. by R. E. K. Stirewalt,
A. Egyed, B. Fischer. ACM, 2007, pp. 525–526. url: https://doi.org/10.
1145/1321631.1321726 (cit. on p. 26).

[142] W. Li, S. Yan, B. Shen, Y. Chen. ‘Reinforcement Learning of Code Search Sessions’.
In: 26th Asia-Pacific Software Engineering Conference, APSEC 2019, Putrajaya,
Malaysia, December 2-5, 2019. IEEE, 2019, pp. 458–465. url: https://doi.
org/10.1109/APSEC48747.2019.00068 (cit. on pp. 28, 29).

[143] X. Li, Z. Wang, Q. Wang, S. Yan, T. Xie, H. Mei. ‘Relationship-Aware Code Search
for JavaScript Frameworks’. In: Proceedings of the 2016 24th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering. FSE 2016. Seattle,
WA, USA: Association for Computing Machinery, 2016, pp. 690–701. url: https:
//doi.org/10.1145/2950290.2950341 (cit. on pp. 20, 28, 30, 31, 33, 34,
38, 42, 44, 45).

[144] Z. Li, S. Lu, S. Myagmar, Y. Zhou. ‘CP-Miner: Finding Copy-Paste and Related
Bugs in Large-Scale Software Code’. In: IEEE Transactions on Software Engineering
32.3 (2006), pp. 176–192 (cit. on pp. 58, 154).

[145] X. Ling, L. Wu, S. Wang, G. Pan, T. Ma, F. Xu, A. X. Liu, C. Wu, S. Ji. ‘Deep Graph
Matching and Searching for Semantic Code Retrieval’. In: ACM Trans. Knowl.
Discov. Data 15.5 (2021), 88:1–88:21. url: https://doi.org/10.1145/
3447571 (cit. on pp. 20, 34, 37, 41, 45).

[146] E. Linstead, S. K. Bajracharya, T. C. Ngo, P. Rigor, C. V. Lopes, P. Baldi. ‘Sourcerer:
mining and searching internet-scale software repositories’. In: Data Min. Knowl.
Discov. 18.2 (2009), pp. 300–336. url: https://doi.org/10.1007/s10618-
008-0118-x (cit. on pp. 20, 33, 35, 37, 44).

Bibliography 177

https://doi.org/10.1145/1882291.1882317
https://doi.org/10.1145/1882291.1882317
https://doi.org/10.1016/j.infsof.2010.11.009
https://doi.org/10.1016/j.infsof.2010.11.009
https://doi.org/10.1145/1321631.1321726
https://doi.org/10.1145/1321631.1321726
https://doi.org/10.1109/APSEC48747.2019.00068
https://doi.org/10.1109/APSEC48747.2019.00068
https://doi.org/10.1145/2950290.2950341
https://doi.org/10.1145/2950290.2950341
https://doi.org/10.1145/3447571
https://doi.org/10.1145/3447571
https://doi.org/10.1007/s10618-008-0118-x
https://doi.org/10.1007/s10618-008-0118-x

[147] C. Liu, X. Xia, D. Lo, C. Gao, X. Yang, J. C. Grundy. ‘Opportunities and Challenges
in Code Search Tools’. In: ACM Comput. Surv. 54.9 (2022), 196:1–196:40. url:
https://doi.org/10.1145/3480027 (cit. on pp. 4, 18).

[148] K. Liu, D. Kim, T. F. Bissyande, T. Kim, K. Kim, A. Koyuncu, S. Kim, Y. L. Traon.
‘Learning to spot and refactor inconsistent method names’. In: Proceedings of
the 41st International Conference on Software Engineering, ICSE 2019, Montreal,
QC, Canada, May 25-31, 2019. 2019, pp. 1–12. url: https://dl.acm.org/
citation.cfm?id=3339507 (cit. on p. 20).

[149] X. Liu, X. Kong, L. Liu, K. Chiang. ‘TreeGAN: syntax-aware sequence generation
with generative adversarial networks’. In: (2018), pp. 1140–1145 (cit. on p. 20).

[150] V. B. Livshits, T. Zimmermann. ‘DynaMine: Finding common error patterns by
mining software revision histories’. In: European Software Engineering Conference
and Symposium on Foundations of Software Engineering (ESEC/FSE). ACM, 2005,
pp. 296–305 (cit. on p. 153).

[151] J. Lu, Y. Wei, X. Sun, B. Li, W. Wen, C. Zhou. ‘Interactive Query Reformulation for
Source-Code Search With Word Relations’. In: IEEE Access 6 (2018), pp. 75660–
75668 (cit. on pp. 20, 28, 44, 46).

[152] M. Lu, X. Sun, S. Wang, D. Lo, Y. Duan. ‘Query expansion via wordnet for effective
code search’. In: 2015 IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER). IEEE. 2015, pp. 545–549 (cit. on pp. 20,
21, 28, 30, 44, 45).

[153] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. B. Clement, D. Drain,
D. Jiang, D. Tang, G. Li, L. Zhou, L. Shou, L. Zhou, M. Tufano, M. Gong, M. Zhou,
N. Duan, N. Sundaresan, S. K. Deng, S. Fu, S. Liu. ‘CodeXGLUE: A Machine
Learning Benchmark Dataset for Code Understanding and Generation’. In: CoRR.
Vol. abs/2102.04664. 2021 (cit. on p. 53).

[154] S. Luan, D. Yang, C. Barnaby, K. Sen, S. Chandra. ‘Aroma: Code recommendation
via structural code search’. In: Proceedings of the ACM on Programming Languages
3.OOPSLA (2019), p. 152 (cit. on pp. 22, 33, 34, 37, 39, 44, 47, 58).

[155] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, L. Tan. ‘CoCoNuT: combining
context-aware neural translationmodels using ensemble for program repair’. In: IS-
STA ’20: 29th ACM SIGSOFT International Symposium on Software Testing and Anal-
ysis, Virtual Event, USA, July 18-22, 2020. Ed. by S. Khurshid, C. S. Pasareanu. ACM,
2020, pp. 101–114. url: https://doi.org/10.1145/3395363.3397369
(cit. on p. 157).

178 Bibliography

https://doi.org/10.1145/3480027
https://dl.acm.org/citation.cfm?id=3339507
https://dl.acm.org/citation.cfm?id=3339507
https://doi.org/10.1145/3395363.3397369

[156] F. Lv, H. Zhang, J.-g. Lou, S. Wang, D. Zhang, J. Zhao. ‘CodeHow: Effective
Code Search Based on API Understanding and Extended Boolean Model (E)’. In:
Proceedings of the 30th IEEE/ACM International Conference on Automated Software
Engineering. 2015, pp. 260–270 (cit. on pp. 20, 28, 30, 31, 33, 37, 44).

[157] R. S. Malik, J. Patra, M. Pradel. ‘NL2Type: Inferring JavaScript function types from
natural language information’. In: Proceedings of the 41st International Conference
on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019.
2019, pp. 304–315. url: https://doi.org/10.1109/ICSE.2019.00045
(cit. on pp. 90, 94, 116, 117, 156).

[158] D. Marcilio, C. A. Furia, R. Bonifácio, G. Pinto. ‘SpongeBugs: Automatically gen-
erating fix suggestions in response to static code analysis warnings’. In: J. Syst.
Softw. 168 (2020), p. 110671. url: https://doi.org/10.1016/j.jss.
2020.110671 (cit. on p. 158).

[159] L. Martie, A. v. d. Hoek. ‘Sameness: An Experiment in Code Search’. In: 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories. 2015, pp. 76–
87 (cit. on pp. 20, 21).

[160] L. Martie, A. v. d. Hoek, T. Kwak. ‘Understanding the Impact of Support for Iteration
on Code Search’. In: Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering. ESEC/FSE 2017. Paderborn, Germany: Association for
Computing Machinery, 2017, pp. 774–785. url: https://doi.org/10.1145/
3106237.3106293 (cit. on pp. 27–29).

[161] L. Martie, T. D. LaToza, A. van der Hoek. ‘Codeexchange: Supporting reformulation
of internet-scale code queries in context (t)’. In: 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE. 2015, pp. 24–35 (cit.
on pp. 25, 28, 29, 33, 39).

[162] G. Mathew, C. Parnin, K. T. Stolee. ‘SLACC: simion-based language agnostic code
clones’. In: ICSE ’20: 42nd International Conference on Software Engineering, Seoul,
South Korea, 27 June - 19 July, 2020. Ed. by G. Rothermel, D. Bae. ACM, 2020,
pp. 210–221. url: https://doi.org/10.1145/3377811.3380407 (cit. on
p. 35).

[163] G. Mathew, K. T. Stolee. ‘Cross-language code search using static and dynamic
analyses’. In: ESEC/FSE ’21: 29th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, Athens, Greece,
August 23-28, 2021. Ed. by D. Spinellis, G. Gousios, M. Chechik, M.D. Penta. ACM,
2021, pp. 205–217. url: https://doi.org/10.1145/3468264.3468538
(cit. on pp. 22, 34, 35, 46).

Bibliography 179

https://doi.org/10.1109/ICSE.2019.00045
https://doi.org/10.1016/j.jss.2020.110671
https://doi.org/10.1016/j.jss.2020.110671
https://doi.org/10.1145/3106237.3106293
https://doi.org/10.1145/3106237.3106293
https://doi.org/10.1145/3377811.3380407
https://doi.org/10.1145/3468264.3468538

[164] C. McMillan, M. Grechanik, D. Poshyvanyk, C. Fu, Q. Xie. ‘Exemplar: A Source
Code Search Engine for Finding Highly Relevant Applications’. In: IEEE Transac-
tions on Software Engineering 38.5 (2012), pp. 1069–1087 (cit. on p. 17).

[165] C. Mcmillan, D. Poshyvanyk, M. Grechanik, Q. Xie, C. Fu. ‘Portfolio: Searching for
Relevant Functions and Their Usages in Millions of Lines of Code’. In: ACM Trans.
Softw. Eng. Methodol. 22.4 (Oct. 2013). url: https://doi.org/10.1145/
2522920.2522930 (cit. on pp. 20, 21, 33, 42, 44).

[166] S. Mechtaev, J. Yi, A. Roychoudhury. ‘Angelix: Scalable multiline program patch
synthesis via symbolic analysis’. In: Proceedings of the 38th international conference
on software engineering. 2016, pp. 691–701 (cit. on p. 157).

[167] N. Meng, M. Kim, K. S. McKinley. ‘Systematic editing: generating program trans-
formations from an example’. In: ACM SIGPLAN Notices 46.6 (2011), pp. 329–342
(cit. on p. 152).

[168] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld, M. Jazayeri.
‘Challenges in software evolution’. In: Eighth International Workshop on Principles
of Software Evolution (IWPSE’05). 2005, pp. 13–22 (cit. on p. 1).

[169] A. Michail. ‘Browsing and Searching Source Code of Applications Written Using a
GUI Framework’. In: Proceedings of the 24th International Conference on Software
Engineering. ICSE ’02. Orlando, Florida: Association for Computing Machinery,
2002, pp. 327–337. url: https://doi.org/10.1145/581339.581381 (cit.
on p. 20).

[170] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean. ‘Distributed represen-
tations of words and phrases and their compositionality’. In: Advances in neural
information processing systems. 2013, pp. 3111–3119 (cit. on pp. 21, 30).

[171] A.M. Mir, E. Latoškinas, S. Proksch, G. Gousios. ‘Type4Py: Practical Deep Sim-
ilarity Learning-Based Type Inference for Python’. In: Proceedings of the 44th
International Conference on Software Engineering. ICSE ’22. Pittsburgh, Pennsylva-
nia: Association for Computing Machinery, 2022, pp. 2241–2252. url: https:
//doi.org/10.1145/3510003.3510124 (cit. on p. 156).

[172] A. Mishne, S. Shoham, E. Yahav. ‘Typestate-Based Semantic Code Search over
Partial Programs’. In: Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications. OOPSLA ’12. Tucson,
Arizona, USA: Association for Computing Machinery, 2012, pp. 997–1016. url:
https://doi.org/10.1145/2384616.2384689 (cit. on pp. 22, 23, 33, 38,
44, 47).

[173] B. Mitra, N. Craswell, et al. An introduction to neural information retrieval. Now
Foundations and Trends, 2018 (cit. on p. 40).

180 Bibliography

https://doi.org/10.1145/2522920.2522930
https://doi.org/10.1145/2522920.2522930
https://doi.org/10.1145/581339.581381
https://doi.org/10.1145/3510003.3510124
https://doi.org/10.1145/3510003.3510124
https://doi.org/10.1145/2384616.2384689

[174] M. Motwani, M. Soto, Y. Brun, R. Just, C. Le Goues. ‘Quality of automated program
repair on real-world defects’. In: IEEE Transactions on Software Engineering (2020)
(cit. on p. 56).

[175] R. Mukherjee, S. Chaudhuri, C. Jermaine. ‘Searching a Database of Source Codes
Using Contextualized Code Search’. In: Proc. VLDB Endow. 13.10 (2020), pp. 1765–
1778. url: https://doi.org/10.14778/3401960.3401972 (cit. on pp. 22,
23, 33, 41, 44).

[176] S. Negara, M. Codoban, D. Dig, R. E. Johnson. ‘Mining fine-grained code changes
to detect unknown change patterns’. In: Proceedings of the 36th International
Conference on Software Engineering. 2014, pp. 803–813 (cit. on pp. 56, 153).

[177] A. T. Nguyen, M. Hilton, M. Codoban, H. A. Nguyen, L. Mast, E. Rademacher,
T. N. Nguyen, D. Dig. ‘API Code Recommendation Using Statistical Learning
from Fine-Grained Changes’. In: Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. FSE 2016. Seattle,
WA, USA: Association for Computing Machinery, 2016, pp. 511–522. url: https:
//doi.org/10.1145/2950290.2950333 (cit. on pp. 22, 33, 44, 153).

[178] H. A. Nguyen, A. T. Nguyen, T. T. Nguyen, T.N. Nguyen, H. Rajan. ‘A study of
repetitiveness of code changes in software evolution’. In: 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE. 2013,
pp. 180–190 (cit. on p. 153).

[179] H. A. Nguyen, T. N. Nguyen, D. Dig, S. Nguyen, H. Tran, M. Hilton. ‘Graph-based
mining of in-the-wild, fine-grained, semantic code change patterns’. In: Proceed-
ings of the 41st International Conference on Software Engineering, ICSE 2019,
Montreal, QC, Canada, May 25-31, 2019. 2019, pp. 819–830. url: https://
doi.org/10.1109/ICSE.2019.00089 (cit. on pp. 56, 58, 153).

[180] H.D. T. Nguyen, D. Qi, A. Roychoudhury, S. Chandra. ‘SemFix: program repair
via semantic analysis’. In: 35th International Conference on Software Engineering,
ICSE ’13, San Francisco, CA, USA, May 18-26, 2013. 2013, pp. 772–781 (cit. on
p. 157).

[181] K. Nguyen, G. Xu. ‘Cachetor: Detecting Cacheable Data to Remove Bloat’. In: Euro-
pean Software Engineering Conference and International Symposiumon Foundations
of Software Engineering (ESEC/FSE). ACM, 2013, pp. 268–278 (cit. on p. 152).

[182] T. V. Nguyen, A. T. Nguyen, H.D. Phan, T. D. Nguyen, T.N. Nguyen. ‘Combining
Word2Vec with Revised Vector Space Model for Better Code Retrieval’. In: 2017
IEEE/ACM 39th International Conference on Software Engineering Companion
(ICSE-C). 2017, pp. 183–185 (cit. on pp. 15, 20, 21, 33, 34, 39, 44).

Bibliography 181

https://doi.org/10.14778/3401960.3401972
https://doi.org/10.1145/2950290.2950333
https://doi.org/10.1145/2950290.2950333
https://doi.org/10.1109/ICSE.2019.00089
https://doi.org/10.1109/ICSE.2019.00089

[183] T. D. Nguyen, A. T. Nguyen, H.D. Phan, T. N. Nguyen. ‘Exploring API embedding
for API usages and applications’. In: 2017 IEEE/ACM 39th International Conference
on Software Engineering (ICSE). IEEE. 2017, pp. 438–449 (cit. on p. 154).

[184] L. Nie, H. Jiang, Z. Ren, Z. Sun, X. Li. ‘Query Expansion Based on Crowd Knowledge
for Code Search’. In: IEEE Transactions on Services Computing 9.5 (2016), pp. 771–
783 (cit. on pp. 20, 28, 30, 33, 36, 44).

[185] B. B. Nielsen, M. T. Torp, A. Møller. ‘Semantic patches for adaptation of JavaScript
programs to evolving libraries’. In: 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE. 2021, pp. 74–85 (cit. on p. 151).

[186] W. Oh, H. Oh. ‘PyTER: Effective Program Repair for Python Type Errors’. In:
ESEC/FSE. 2022 (cit. on pp. 123, 147, 148, 157).

[187] J.-P. Ore, S. Elbaum, C. Detweiler, L. Karkazis. ‘Assessing the type annotation bur-
den’. In: Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. 2018, pp. 190–201 (cit. on p. 92).

[188] F. Ortin, J. B. G. Perez-Schofield, J.M. Redondo. ‘Towards a static type checker
for python’. In: European Conference on Object-Oriented Programming (ECOOP),
Scripts to Programs Workshop, STOP. Vol. 15. 2015, pp. 1–2 (cit. on pp. 90, 156).

[189] J. Ossher, S. K. Bajracharya, E. Linstead, P. Baldi, C. V. Lopes. ‘SourcererDB: An
aggregated repository of statically analyzed and cross-linked open source Java
projects’. In: Proceedings of the 6th International Working Conference on Mining
Software Repositories, MSR 2009 (Co-located with ICSE), Vancouver, BC, Canada,
May 16-17, 2009, Proceedings. Ed. by M.W. Godfrey, J. Whitehead. IEEE Computer
Society, 2009, pp. 183–186. url: https://doi.org/10.1109/MSR.2009.
5069501 (cit. on pp. 33, 44).

[190] R. Paletov, P. Tsankov, V. Raychev, M. T. Vechev. ‘Inferring crypto API rules from
code changes’. In: Proceedings of the 39th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2018, Philadelphia, PA, USA,
June 18-22, 2018. Ed. by J. S. Foster, D. Grossman. ACM, 2018, pp. 450–464. url:
https://doi.org/10.1145/3192366.3192403 (cit. on pp. 58, 152, 153).

[191] K. Pan, S. Kim, E. J. Whitehead. ‘Toward an understanding of bug fix patterns’. In:
Empirical Software Engineering 14.3 (2009), pp. 286–315 (cit. on p. 57).

[192] O. Panchenko, H. Plattner, A. Zeier. ‘What do developers search for in source
code and why’. In: Proceedings of the 3rd International Workshop on Search-Driven
Development: Users, Infrastructure, Tools, and Evaluation. 2011, pp. 33–36 (cit. on
pp. 47, 48).

182 Bibliography

https://doi.org/10.1109/MSR.2009.5069501
https://doi.org/10.1109/MSR.2009.5069501
https://doi.org/10.1145/3192366.3192403

[193] P. P. Partachi, S. K. Dash, M. Allamanis, E. T. Barr. ‘Flexeme: untangling commits
using lexical flows’. In: ESEC/FSE ’20: 28th ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering, Virtual
Event, USA, November 8-13, 2020. Ed. by P. Devanbu, M. B. Cohen, T. Zimmermann.
ACM, 2020, pp. 63–74. url: https://doi.org/10.1145/3368089.3409693
(cit. on p. 60).

[194] J. Patra, M. Pradel. ‘Nalin: Learning from Runtime Behavior to Find Name-Value
Inconsistencies in Jupyter Notebooks’. In: ICSE. 2022 (cit. on p. 156).

[195] S. Paul. ‘SCRUPLE: A Reengineer’s Tool for Source Code Search’. In: Proceedings of
the 1992 Conference of the Centre for Advanced Studies on Collaborative Research -
Volume 1. CASCON ’92. Toronto, Ontario, Canada: IBM Press, 1992, pp. 329–346
(cit. on pp. 22, 33, 34, 38, 43, 44).

[196] S. Paul, A. Prakash. ‘A framework for source code search using program patterns’.
In: IEEE Transactions on Software Engineering 20.6 (1994), pp. 463–475 (cit. on
pp. 22, 28, 31, 33, 34, 38, 43, 44).

[197] Y. Peng, C. Gao, Z. Li, B. Gao, D. Lo, Q. Zhang, M. Lyu. ‘Static Inference Meets
Deep Learning: A Hybrid Type Inference Approach for Python’. In: Proceedings of
the 44th International Conference on Software Engineering. ICSE ’22. Pittsburgh,
Pennsylvania: Association for Computing Machinery, 2022, pp. 2019–2030. url:
https://doi.org/10.1145/3510003.3510038 (cit. on p. 156).

[198] J. Pennington, R. Socher, C. D. Manning. ‘Glove: Global vectors for word repre-
sentation’. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP). 2014, pp. 1532–1543 (cit. on p. 41).

[199] J. A. Pienaar, R. Hundt. ‘JSWhiz: Static analysis for JavaScript memory leaks’. In:
Proceedings of the 2013 IEEE/ACM International Symposium on Code Generation
and Optimization, CGO 2013, Shenzhen, China, February 23-27, 2013. 2013, 11:1–
11:11 (cit. on p. 4).

[200] A. Podgurski, L. Pierce. ‘Retrieving Reusable Software by Sampling Behaviour’.
In: ACM Trans. Softw. Eng. Methodol. 2.3 (1993), pp. 286–303. url: https:
//doi.org/10.1145/152388.152392 (cit. on pp. 26, 33, 35, 44).

[201] D. Poshyvanyk, M. Grechanik. ‘Creating and evolving software by searching,
selecting and synthesizing relevant source code’. In: 2009 31st International
Conference on Software Engineering - Companion Volume. 2009, pp. 283–286 (cit.
on pp. 33, 39, 44).

[202] M. Pradel, S. Chandra. ‘Neural software analysis’. In: Commun. ACM 65.1 (2022),
pp. 86–96. url: https://doi.org/10.1145/3460348 (cit. on pp. 40, 52).

Bibliography 183

https://doi.org/10.1145/3368089.3409693
https://doi.org/10.1145/3510003.3510038
https://doi.org/10.1145/152388.152392
https://doi.org/10.1145/152388.152392
https://doi.org/10.1145/3460348

[203] M. Pradel, G. Gousios, J. Liu, S. Chandra. ‘TypeWriter: Neural Type Prediction with
Search-based Validation’. In: ESEC/FSE ’20: 28th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
Virtual Event, USA, November 8-13, 2020. 2020, pp. 209–220. url: https://
doi.org/10.1145/3368089.3409715 (cit. on pp. 90, 94, 116, 117, 120, 156).

[204] M. Pradel, K. Sen. ‘DeepBugs: A learning approach to name-based bug detection’.
In: PACMPL 2.OOPSLA (2018), 147:1–147:25. url: https://doi.org/10.
1145/3276517 (cit. on pp. 83, 120).

[205] V. Premtoon, J. Koppel, A. Solar-Lezama. ‘Semantic Code Search via Equational
Reasoning’. In: PLDI. 2020 (cit. on pp. 26, 38, 42, 44).

[206] Z. Qi, F. Long, S. Achour, M. Rinard. ‘An analysis of patch plausibility and correct-
ness for generate-and-validate patch generation systems’. In: Proceedings of the
2015 International Symposium on Software Testing and Analysis. 2015, pp. 24–36
(cit. on p. 157).

[207] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,
P. J. Liu. ‘Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer’. In: J. Mach. Learn. Res. 21 (2020), 140:1–140:67. url: http:
//jmlr.org/papers/v21/20-074.html (cit. on p. 135).

[208] M. Raghothaman, Y. Wei, Y. Hamadi. ‘SWIM: Synthesizing What i Mean: Code
Search and Idiomatic Snippet Synthesis’. In: Proceedings of the 38th International
Conference on Software Engineering. ICSE ’16. Austin, Texas: Association for Com-
puting Machinery, 2016, pp. 357–367. url: https://doi.org/10.1145/
2884781.2884808 (cit. on pp. 20, 21).

[209] M.M. Rahman, C. Roy. ‘Effective Reformulation of Query for Code Search Us-
ing Crowdsourced Knowledge and Extra-Large Data Analytics’. In: 2018 IEEE
International Conference on Software Maintenance and Evolution (ICSME). 2018,
pp. 473–484 (cit. on pp. 20, 28, 30, 31, 46).

[210] M.M. Rahman, J. Barson, S. Paul, J. Kayan, F. A. Lois, S. F. Quezada, C. Parnin,
K. T. Stolee, B. Ray. ‘Evaluating how developers use general-purpose web-search
for code retrieval’. In: Proceedings of the 15th International Conference on Mining
Software Repositories, MSR 2018, Gothenburg, Sweden, May 28-29, 2018. Ed. by
A. Zaidman, Y. Kamei, E. Hill. ACM, 2018, pp. 465–475. url: https://doi.
org/10.1145/3196398.3196425 (cit. on pp. 14, 47–50).

[211] I. Rak-amnouykit, D. McCrevan, A. Milanova, M. Hirzel, J. Dolby. ‘Python 3 Types
in the Wild: A Tale of Two Type Systems’. In: DLS. 2020 (cit. on pp. 56, 93, 116,
124, 155).

184 Bibliography

https://doi.org/10.1145/3368089.3409715
https://doi.org/10.1145/3368089.3409715
https://doi.org/10.1145/3276517
https://doi.org/10.1145/3276517
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1145/2884781.2884808
https://doi.org/10.1145/2884781.2884808
https://doi.org/10.1145/3196398.3196425
https://doi.org/10.1145/3196398.3196425

[212] N. Rao, C. Bansal, J. Guan. ‘Search4Code: Code Search Intent Classification
Using Weak Supervision’. In: 18th IEEE/ACM International Conference on Mining
Software Repositories, MSR 2021, Madrid, Spain, May 17-19, 2021. IEEE, 2021,
pp. 575–579. url: https://doi.org/10.1109/MSR52588.2021.00077
(cit. on p. 53).

[213] V. Raychev, M. T. Vechev, A. Krause. ‘Predicting Program Properties from "Big
Code".’ In: Principles of Programming Languages (POPL). 2015, pp. 111–124 (cit.
on pp. 90, 156).

[214] V. Raychev, M. T. Vechev, E. Yahav. ‘Code completion with statistical language
models’. In: ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014. 2014,
p. 44 (cit. on p. 17).

[215] S. P. Reiss. ‘Semantics-based code search’. In: 31st International Conference on
Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada, Proceedings.
IEEE, 2009, pp. 243–253. url: https://doi.org/10.1109/ICSE.2009.
5070525 (cit. on pp. 26, 27, 35, 44, 58).

[216] B.M. Ren, J. Toman, T. S. Strickland, J. S. Foster. ‘The Ruby Type Checker’. In:
Proceedings of the 28th Annual ACM Symposium on Applied Computing. SAC ’13.
Coimbra, Portugal: ACM, 2013, pp. 1565–1572. url: http://doi.acm.org/
10.1145/2480362.2480655 (cit. on pp. 90, 156).

[217] A. Rice, E. Aftandilian, C. Jaspan, E. Johnston, M. Pradel, Y. Arroyo-Paredes.
‘Detecting Argument Selection Defects’. In: Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA). 2017 (cit. on p. 59).

[218] G. Richards, C. Hammer, B. Burg, J. Vitek. ‘The Eval That Men Do - A Large-Scale
Study of the Use of Eval in JavaScript Applications’. In: European Conference on
Object-Oriented Programming (ECOOP). 2011, pp. 52–78 (cit. on p. 155).

[219] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi, R. Suzuki,
B. Hartmann. ‘Learning syntactic program transformations from examples’. In:
Proceedings of the 39th International Conference on Software Engineering, ICSE
2017, Buenos Aires, Argentina, May 20-28, 2017. 2017, pp. 404–415. url: https:
//doi.org/10.1109/ICSE.2017.44 (cit. on pp. 58, 153).

[220] C. K. Roy, J. R. Cordy. ‘NICAD: Accurate detection of near-miss intentional clones
using flexible pretty-printing and code normalization’. In: 2008 16th iEEE inter-
national conference on program comprehension. IEEE. 2008, pp. 172–181 (cit. on
pp. 58, 154).

[221] C. K. Roy, J. R. Cordy. ‘A survey on software clone detection research’. In: Queen’s
School of Computing TR 541.115 (2007), pp. 64–68 (cit. on pp. 17, 51).

Bibliography 185

https://doi.org/10.1109/MSR52588.2021.00077
https://doi.org/10.1109/ICSE.2009.5070525
https://doi.org/10.1109/ICSE.2009.5070525
http://doi.acm.org/10.1145/2480362.2480655
http://doi.acm.org/10.1145/2480362.2480655
https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1109/ICSE.2017.44

[222] S. Sachdev, H. Li, S. Luan, S. Kim, K. Sen, S. Chandra. ‘Retrieval on source code:
a neural code search’. In: Proceedings of the 2nd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages. ACM. 2018, pp. 31–
41 (cit. on pp. 20, 33, 35, 40, 41, 44, 45).

[223] C. Sadowski, K. T. Stolee, S. Elbaum. ‘How developers search for code: a case
study’. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. 2015, pp. 191–201 (cit. on pp. 14, 32, 47–49, 78).

[224] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, C. V. Lopes. ‘SourcererCC: Scaling code
clone detection to big-code’. In: Proceedings of the 38th International Conference
on Software Engineering. 2016, pp. 1157–1168 (cit. on pp. 58, 154).

[225] G. Sakkas, M. Endres, B. Cosman, W. Weimer, R. Jhala. ‘Type error feedback via
analytic program repair’. In: Proceedings of the 41st ACM SIGPLAN International
Conference on Programming Language Design and Implementation, PLDI 2020,
London, UK, June 15-20, 2020. Ed. by A. F. Donaldson, E. Torlak. ACM, 2020,
pp. 16–30. url: https://doi.org/10.1145/3385412.3386005 (cit. on
p. 157).

[226] G. Salton, E. A. Fox, H. Wu. ‘Extended Boolean information retrieval’. In: Commu-
nications of the ACM 26.11 (1983), pp. 1022–1036 (cit. on p. 39).

[227] P. Salza, C. Schwizer, J. Gu, H. C. Gall. ‘On the effectiveness of transfer learning
for code search’. In: IEEE Transactions on Software Engineering (2022) (cit. on
pp. 20, 33, 34, 37, 41, 44, 45).

[228] M. Selakovic, M. Pradel. ‘Performance Issues and Optimizations in JavaScript:
An Empirical Study’. In: International Conference on Software Engineering (ICSE).
2016, pp. 61–72 (cit. on p. 155).

[229] T. Seymour, D. Frantsvog, S. Kumar, et al. ‘History of search engines’. In: Interna-
tional Journal of Management & Information Systems (IJMIS) 15.4 (2011), pp. 47–
58 (cit. on p. 14).

[230] D. Shepherd, K. Damevski, B. Ropski, T. Fritz. ‘Sando: An Extensible Local Code
Search Framework’. In: Proceedings of the ACM SIGSOFT 20th International Sym-
posium on the Foundations of Software Engineering. FSE ’12. Cary, North Carolina:
Association for Computing Machinery, 2012. url: https://doi.org/10.1145/
2393596.2393612 (cit. on pp. 15, 20, 21, 28, 31, 33, 34).

[231] J. G. Siek, W. Taha. ‘Gradual Typing for Objects’. In: ECOOP 2007 - Object-Oriented
Programming, 21st European Conference, Berlin, Germany, July 30 - August 3,
2007, Proceedings. Ed. by E. Ernst. Vol. 4609. Lecture Notes in Computer Science.
Springer, 2007, pp. 2–27. url: https://doi.org/10.1007/978-3-540-
73589-2%5C_2 (cit. on p. 124).

186 Bibliography

https://doi.org/10.1145/3385412.3386005
https://doi.org/10.1145/2393596.2393612
https://doi.org/10.1145/2393596.2393612
https://doi.org/10.1007/978-3-540-73589-2%5C_2
https://doi.org/10.1007/978-3-540-73589-2%5C_2

[232] S. E. Sim, C. L. A. Clarke, R. C. Holt. ‘Archetypal Source Code Searches: A Survey of
Software Developers and Maintainers’. In: 6th International Workshop on Program
Comprehension (IWPC ’98), June 24-26, 1998, Ischia, Italy. IEEE Computer Society,
1998, pp. 180–187. url: https://doi.org/10.1109/WPC.1998.693351
(cit. on pp. 47–49).

[233] S. E. Sim, M. Umarji, S. Ratanotayanon, C. V. Lopes. ‘How Well Do Search Engines
Support Code Retrieval on the Web?’ In: ACM Trans. Softw. Eng. Methodol. 21.1
(2011), 4:1–4:25. url: https://doi.org/10.1145/2063239.2063243 (cit.
on pp. 47–50).

[234] R. Sindhgatta. ‘Using an Information Retrieval System to Retrieve Source Code
Samples’. In: Proceedings of the 28th International Conference on Software Engi-
neering. ICSE ’06. Shanghai, China: Association for Computing Machinery, 2006,
pp. 905–908. url: https://doi.org/10.1145/1134285.1134448 (cit. on
p. 25).

[235] J. Singer, T. C. Lethbridge, N. G. Vinson, N. Anquetil. ‘An examination of software
engineering work practices’. In: Proceedings of the 1997 conference of the Centre
for Advanced Studies on Collaborative Research, November 10-13, 1997, Toronto,
Ontario, Canada. Ed. by J. H. Johnson. IBM, 1997, p. 21. url: https://dl.acm.
org/citation.cfm?id=782031 (cit. on pp. 47, 48).

[236] R. Sirres, T. F. Bissyande, D. Kim, D. Lo, J. Klein, K. Kim, Y. L. Traon. ‘Augmenting
and structuring user queries to support efficient free-form code search’. In: Pro-
ceedings of the 40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018. Ed. by M. Chaudron, I. Crnkovic,
M. Chechik, M. Harman. ACM, 2018, p. 945. url: https://doi.org/10.
1145/3180155.3182513 (cit. on pp. 20, 28, 30, 33, 37, 39, 44).

[237] B. Sisman, A. C. Kak. ‘Assisting code search with automatic Query Reformula-
tion for bug localization’. In: 2013 10th Working Conference on Mining Software
Repositories (MSR). 2013, pp. 309–318 (cit. on pp. 28–30, 33, 39).

[238] A. Sivaraman, T. Zhang, G. V. den Broeck, M. Kim. ‘Active inductive logic pro-
gramming for code search’. In: Proceedings of the 41st International Conference
on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019.
Ed. by J.M. Atlee, T. Bultan, J. Whittle. IEEE, 2019, pp. 292–303. url: https:
//doi.org/10.1109/ICSE.2019.00044 (cit. on pp. 25, 33, 34, 44).

[239] R. Sousa, G. Soares, R. Gheyi, T. Barik, L. D’Antoni. ‘Learning Quick Fixes from
Code Repositories’. In: Proceedings of the XXXV Brazilian Symposium on Software
Engineering. SBES ’21. Joinville, Brazil: Association for Computing Machinery,
2021, pp. 74–83. url: https://doi.org/10.1145/3474624.3474650 (cit.
on p. 153).

Bibliography 187

https://doi.org/10.1109/WPC.1998.693351
https://doi.org/10.1145/2063239.2063243
https://doi.org/10.1145/1134285.1134448
https://dl.acm.org/citation.cfm?id=782031
https://dl.acm.org/citation.cfm?id=782031
https://doi.org/10.1145/3180155.3182513
https://doi.org/10.1145/3180155.3182513
https://doi.org/10.1109/ICSE.2019.00044
https://doi.org/10.1109/ICSE.2019.00044
https://doi.org/10.1145/3474624.3474650

[240] C. Staicu, M. Pradel. ‘Freezing the Web: A Study of ReDoS Vulnerabilities in
JavaScript-based Web Servers’. In: USENIX Security Symposium. 2018, pp. 361–
376 (cit. on p. 155).

[241] K.-J. Stol, B. Fitzgerald. ‘The ABC of Software Engineering Research’. In: ACM
Trans. Softw. Eng. Methodol. 27.3 (Sept. 2018). url: https://doi.org/10.
1145/3241743 (cit. on p. 5).

[242] K. T. Stolee, S. Elbaum, D. Dobos. ‘Solving the Search for Source Code’. In: ACM
Trans. Softw. Eng. Methodol. 23.3 (June 2014). url: https://doi.org/10.
1145/2581377 (cit. on pp. 26, 44).

[243] K. T. Stolee, S. G. Elbaum. ‘Toward semantic search via SMT solver’. In: 20th
ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE-20),
SIGSOFT/FSE’12, Cary, NC, USA - November 11 - 16, 2012. Ed. by W. Tracz,
M. P. Robillard, T. Bultan. ACM, 2012, p. 25. url: https://doi.org/10.
1145/2393596.2393625 (cit. on p. 26).

[244] K. T. Stolee, S. G. Elbaum, M. B. Dwyer. ‘Code search with input/output queries:
Generalizing, ranking, and assessment’. In: J. Syst. Softw. 116 (2016), pp. 35–48.
url: https://doi.org/10.1016/j.jss.2015.04.081 (cit. on pp. 26, 33,
35, 43, 44).

[245] C. Sun, Y. Li, Q. Zhang, T. Gu, Z. Su. ‘Perses: syntax-guided program reduction’. In:
Proceedings of the 40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018. Ed. by M. Chaudron, I. Crnkovic,
M. Chechik, M. Harman. ACM, 2018, pp. 361–371. url: https://doi.org/
10.1145/3180155.3180236 (cit. on p. 139).

[246] W. Sun, C. Fang, Y. Chen, G. Tao, T. Han, Q. Zhang. ‘Code Search Based on
Context-Aware Code Translation’. In: Proceedings of the 44th International Confer-
ence on Software Engineering. ICSE ’22. Pittsburgh, Pennsylvania: Association for
Computing Machinery, 2022, pp. 388–400. url: https://doi.org/10.1145/
3510003.3510140 (cit. on pp. 20, 33, 35, 37, 40, 44, 45).

[247] Z. Sun, Q. Zhu, Y. Xiong, Y. Sun, L. Mou, L. Zhang. ‘TreeGen: A tree-based trans-
former architecture for code generation’. In: Proceedings of the AAAI Conference
on Artificial Intelligence. Vol. 34. 05. 2020, pp. 8984–8991 (cit. on p. 157).

[248] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, M.M. Mia. ‘Towards a Big Data
Curated Benchmark of Inter-project Code Clones’. In: 30th IEEE International
Conference on Software Maintenance and Evolution, Victoria, BC, Canada, September
29 - October 3, 2014. IEEE Computer Society, 2014, pp. 476–480. url: https:
//doi.org/10.1109/ICSME.2014.77 (cit. on p. 53).

188 Bibliography

https://doi.org/10.1145/3241743
https://doi.org/10.1145/3241743
https://doi.org/10.1145/2581377
https://doi.org/10.1145/2581377
https://doi.org/10.1145/2393596.2393625
https://doi.org/10.1145/2393596.2393625
https://doi.org/10.1016/j.jss.2015.04.081
https://doi.org/10.1145/3180155.3180236
https://doi.org/10.1145/3180155.3180236
https://doi.org/10.1145/3510003.3510140
https://doi.org/10.1145/3510003.3510140
https://doi.org/10.1109/ICSME.2014.77
https://doi.org/10.1109/ICSME.2014.77

[249] W. Takuya, H. Masuhara. ‘A Spontaneous Code Recommendation Tool Based on
Associative Search’. In: Proceedings of the 3rd International Workshop on Search-
Driven Development: Users, Infrastructure, Tools, and Evaluation. SUITE ’11. Waikiki,
Honolulu, HI, USA: Association for Computing Machinery, 2011, pp. 17–20. url:
https://doi.org/10.1145/1985429.1985434 (cit. on pp. 22, 23, 33, 36,
39, 45, 46, 53).

[250] S.H. Tan, J. Yi, Yulis, S. Mechtaev, A. Roychoudhury. ‘Codeflaws: a programming
competition benchmark for evaluating automated program repair tools’. In: Pro-
ceedings of the 39th International Conference on Software Engineering, ICSE 2017,
Buenos Aires, Argentina, May 20-28, 2017 - Companion Volume. Ed. by S. Uchi-
tel, A. Orso, M. P. Robillard. IEEE Computer Society, 2017, pp. 180–182. url:
https://doi.org/10.1109/ICSE-C.2017.76 (cit. on p. 56).

[251] R. Tate, M. Stepp, Z. Tatlock, S. Lerner. ‘Equality saturation: a new approach to
optimization’. In: Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2009, Savannah, GA, USA, January
21-23, 2009. Ed. by Z. Shao, B. C. Pierce. ACM, 2009, pp. 264–276. url: https:
//doi.org/10.1145/1480881.1480915 (cit. on p. 26).

[252] K. F. Tómasdóttir, M. Aniche, A. van Deursen. ‘Why and how JavaScript developers
use linters’. In: 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE. 2017, pp. 578–589 (cit. on p. 92).

[253] M. Tufano, J. Pantiuchina, C. Watson, G. Bavota, D. Poshyvanyk. ‘On learning
meaningful code changes via neural machine translation’. In: Proceedings of the
41st International Conference on Software Engineering, ICSE 2019, Montreal, QC,
Canada, May 25-31, 2019. 2019, pp. 25–36. url: https://dl.acm.org/
citation.cfm?id=3339509 (cit. on pp. 153, 157).

[254] M. Vasic, A. Kanade, P. Maniatis, D. Bieber, R. Singh. ‘Neural Program Repair by
Jointly Learning to Localize and Repair’. In: ICLR. 2019 (cit. on p. 157).

[255] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
I. Polosukhin. ‘Attention is all you need’. In: Advances in neural information pro-
cessing systems 30 (2017) (cit. on p. 4).

[256] V. Vinayakarao, A. Sarma, R. Purandare, S. Jain, S. Jain. ‘ANNE: Improving Source
Code Search using Entity Retrieval Approach’. In: Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining, WSDM 2017, Cambridge,
United Kingdom, February 6-10, 2017. Ed. byM. de Rijke, M. Shokouhi, A. Tomkins,
M. Zhang. ACM, 2017, pp. 211–220. url: https://doi.org/10.1145/
3018661.3018691 (cit. on pp. 20, 21, 44).

Bibliography 189

https://doi.org/10.1145/1985429.1985434
https://doi.org/10.1109/ICSE-C.2017.76
https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1145/1480881.1480915
https://dl.acm.org/citation.cfm?id=3339509
https://dl.acm.org/citation.cfm?id=3339509
https://doi.org/10.1145/3018661.3018691
https://doi.org/10.1145/3018661.3018691

[257] M.M. Vitousek, A.M. Kent, J. G. Siek, J. Baker. ‘Design and evaluation of gradual
typing for python’. In: DLS’14, Proceedings of the 10th ACM Symposium on Dynamic
Languages, part of SLASH 2014, Portland, OR, USA, October 20-24, 2014. Ed. by
A. P. Black, L. Tratt. ACM, 2014, pp. 45–56. url: https://doi.org/10.1145/
2661088.2661101 (cit. on pp. 90, 156).

[258] Y. Wan, W. Zhao, H. Zhang, Y. Sui, G. Xu, H. Jin. ‘What Do They Capture? A Struc-
tural Analysis of Pre-Trained Language Models for Source Code’. In: Proceedings
of the 44th International Conference on Software Engineering. ICSE ’22. Pittsburgh,
Pennsylvania: Association for Computing Machinery, 2022, pp. 2377–2388. url:
https://doi.org/10.1145/3510003.3510050 (cit. on p. 158).

[259] S. Wang, D. Lo, L. Jiang. ‘Code Search via Topic-Enriched Dependence Graph
Matching’. In: 2011 18thWorking Conference on Reverse Engineering. 2011, pp. 119–
123 (cit. on pp. 25, 28, 31).

[260] S. Wang, D. Lo, L. Jiang. ‘Active Code Search: Incorporating User Feedback to
Improve Code Search Relevance’. In: Proceedings of the 29th ACM/IEEE Inter-
national Conference on Automated Software Engineering. ASE ’14. Vasteras, Swe-
den: Association for Computing Machinery, 2014, pp. 677–682. url: https:
//doi.org/10.1145/2642937.2642947 (cit. on p. 20).

[261] W. Wang, Y. Zhang, Z. Zeng, G. Xu. ‘TranS3: A Transformer-based Framework
for Unifying Code Summarization and Code Search’. In: CoRR abs/2003.03238
(2020). arXiv: 2003.03238. url: https://arxiv.org/abs/2003.03238
(cit. on p. 20).

[262] X. Wang, D. Lo, J. Cheng, L. Zhang, H. Mei, J. X. Yu. ‘Matching dependence-
related queries in the system dependence graph’. In: Proceedings of the IEEE/ACM
international conference on Automated software engineering. 2010, pp. 457–466
(cit. on p. 25).

[263] Y. Wang, F. Gao, L. Wang. ‘Demystifying Code Summarization Models’. In: CoRR
(2021). url: https://arxiv.org/abs/2102.04625 (cit. on p. 158).

[264] P. Weißgerber, S. Diehl. ‘Identifying Refactorings from Source-Code Changes’. In:
International Conference on Automated Software Engineering (ASE). IEEE, 2006,
pp. 231–240 (cit. on p. 152).

[265] M. Wen, R. Wu, S. Cheung. ‘Locus: locating bugs from software changes’. In:
Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2016, Singapore, September 3-7, 2016. 2016, pp. 262–273. url:
https://doi.org/10.1145/2970276.2970359 (cit. on p. 152).

190 Bibliography

https://doi.org/10.1145/2661088.2661101
https://doi.org/10.1145/2661088.2661101
https://doi.org/10.1145/3510003.3510050
https://doi.org/10.1145/2642937.2642947
https://doi.org/10.1145/2642937.2642947
https://arxiv.org/abs/2003.03238
https://arxiv.org/abs/2003.03238
https://arxiv.org/abs/2102.04625
https://doi.org/10.1145/2970276.2970359

[266] D. Wightman, Z. Ye, J. Brandt, R. Vertegaal. ‘SnipMatch: Using Source Code
Context to Enhance Snippet Retrieval and Parameterization’. In: Proceedings of the
25th Annual ACM Symposium on User Interface Software and Technology. UIST ’12.
Cambridge, Massachusetts, USA: Association for Computing Machinery, 2012,
pp. 219–228. url: https://doi.org/10.1145/2380116.2380145 (cit. on
pp. 23, 27, 44, 46).

[267] W. E. Wong, R. Gao, Y. Li, R. Abreu, F. Wotawa. ‘A survey on software fault
localization’. In: IEEE Transactions on Software Engineering 42.8 (2016), pp. 707–
740 (cit. on p. 152).

[268] H. Wu, Y. Yang. ‘Code Search Based on Alteration Intent’. In: IEEE Access 7 (2019),
pp. 56796–56802 (cit. on pp. 20, 28, 30, 33, 39, 44).

[269] R. Wu, M. Wen, S. Cheung, H. Zhang. ‘ChangeLocator: locate crash-inducing
changes based on crash reports’. In: Empirical Software Engineering 23.5 (2018),
pp. 2866–2900. url: https://doi.org/10.1007/s10664-017-9567-4
(cit. on p. 152).

[270] X. Wu, C. Zhu, Y. Li. ‘DIFFBASE: A Differential Factbase for Effective Software
Evolution Management’. In: ESEC/FSE. 2021 (cit. on p. 151).

[271] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,
Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, Ł. Kaiser, S. Gouws,
Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young,
J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, J. Dean. Google’s
Neural Machine Translation System: Bridging the Gap between Human and Machine
Translation. 2016. url: https://arxiv.org/abs/1609.08144 (cit. on p. 37).

[272] C. S. Xia, Y. Wei, L. Zhang. ‘Automated program repair in the era of large pre-
trained language models’. In: Proceedings of the 45th International Conference on
Software Engineering (ICSE 2023). Association for Computing Machinery. 2023
(cit. on pp. 146, 157).

[273] C. S. Xia, L. Zhang. ‘Keep the Conversation Going: Fixing 162 out of 337 bugs for
$0.42 each using ChatGPT’. In: arXiv preprint arXiv:2304.00385 (2023) (cit. on
pp. 146, 157).

[274] C. S. Xia, L. Zhang. ‘Less training, more repairing please: revisiting automated
program repair via zero-shot learning’. In: Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2022, Singapore, Singapore, November 14-18,
2022. Ed. by A. Roychoudhury, C. Cadar, M. Kim. ACM, 2022, pp. 959–971. url:
https://doi.org/10.1145/3540250.3549101 (cit. on p. 157).

Bibliography 191

https://doi.org/10.1145/2380116.2380145
https://doi.org/10.1007/s10664-017-9567-4
https://arxiv.org/abs/1609.08144
https://doi.org/10.1145/3540250.3549101

[275] X. Xia, X. He, Y. Yan, L. Xu, B. Xu. ‘An Empirical Study of Dynamic Types for
Python Projects’. In: International Conference on Software Analysis, Testing, and
Evolution. Springer. 2018, pp. 85–100 (cit. on p. 92).

[276] L. Xu, H. Yang, C. Liu, J. Shuai, M. Yan, Y. Lei, Z. Xu. ‘Two-Stage Attention-
Based Model for Code Search with Textual and Structural Features’. In: 28th
IEEE International Conference on Software Analysis, Evolution and Reengineering,
SANER 2021, Honolulu, HI, USA, March 9-12, 2021. IEEE, 2021, pp. 342–353.
url: https://doi.org/10.1109/SANER50967.2021.00039 (cit. on pp. 20,
34, 41).

[277] Z. Xu, P. Liu, X. Zhang, B. Xu. ‘Python predictive analysis for bug detection’. In:
Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. Ed.
by T. Zimmermann, J. Cleland-Huang, Z. Su. ACM, 2016, pp. 121–132. url:
https://doi.org/10.1145/2950290.2950357 (cit. on p. 156).

[278] Z. Xu, X. Zhang, L. Chen, K. Pei, B. Xu. ‘Python probabilistic type inference with
natural language support’. In: Proceedings of the 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA,
November 13-18, 2016. 2016, pp. 607–618. url: https://doi.org/10.1145/
2950290.2950343 (cit. on pp. 90, 120, 156).

[279] F. Yang, H. Mei, K. Li. ‘Software Reuse Software Component Technology’. In: Acta
Electronica Sinica 27 (1999), pp. 68–75 (cit. on p. 14).

[280] Y. Yang, X. Xia, D. Lo, J. Grundy. ‘A survey on deep learning for software engi-
neering’. In: ACM Computing Surveys (CSUR) 54.10s (2022), pp. 1–73 (cit. on
p. 4).

[281] M. Yasunaga, P. Liang. ‘Graph-based, Self-Supervised Program Repair from Diag-
nostic Feedback’. In: Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event. Vol. 119. Proceedings
of Machine Learning Research. PMLR, 2020, pp. 10799–10808. url: http:
//proceedings.mlr.press/v119/yasunaga20a.html (cit. on p. 157).

[282] F. Ye, S. Zhou, A. Venkat, R. Marcus, P. Petersen, J. J. Tithi, T. Mattson, T. Kraska,
P. Dubey, V. Sarkar, J. Gottschlich. ‘Context-Aware Parse Trees’. In: arXiv preprint
arXiv:2003.11118 (2020) (cit. on pp. 20, 44, 46).

[283] H. Ye, M. Martinez, M. Monperrus. ‘Neural Program Repair with Execution-based
Backpropagation’. In: ICSE. 2022 (cit. on p. 157).

[284] A. Zeller. ‘Isolating cause-effect chains from computer programs’. In: ACM SIGSOFT
Software Engineering Notes 27.6 (2002), pp. 1–10 (cit. on pp. 122, 132, 152).

192 Bibliography

https://doi.org/10.1109/SANER50967.2021.00039
https://doi.org/10.1145/2950290.2950357
https://doi.org/10.1145/2950290.2950343
https://doi.org/10.1145/2950290.2950343
http://proceedings.mlr.press/v119/yasunaga20a.html
http://proceedings.mlr.press/v119/yasunaga20a.html

[285] J.M. Zhang, F. Li, D. Hao, M. Wang, H. Tang, L. Zhang, M. Harman. ‘A Study
of Bug Resolution Characteristics in Popular Programming Languages’. In: IEEE
Trans. Software Eng. 47.12 (2021), pp. 2684–2697. url: https://doi.org/
10.1109/TSE.2019.2961897 (cit. on p. 155).

[286] S. Zhou, H. Zhong, B. Shen. ‘SLAMPA: Recommending Code Snippets with Statis-
tical Language Model’. In: 2018 25th Asia-Pacific Software Engineering Conference
(APSEC). 2018, pp. 79–88 (cit. on pp. 22, 41, 44).

[287] S. Zhou, B. Shen, H. Zhong. ‘Lancer: Your Code Tell Me What You Need’. In: 34th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2019,
San Diego, CA, USA, November 11-15, 2019. IEEE, 2019, pp. 1202–1205. url:
https://doi.org/10.1109/ASE.2019.00137 (cit. on pp. 22, 23, 33, 34, 41,
46).

[288] Q. Zhu, Z. Sun, Y. Xiao, W. Zhang, K. Yuan, Y. Xiong, L. Zhang. ‘A syntax-guided
edit decoder for neural program repair’. In: ESEC/FSE ’21: 29th ACM Joint Eu-
ropean Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Athens, Greece, August 23-28, 2021. Ed. by D. Spinellis,
G. Gousios, M. Chechik, M.D. Penta. ACM, 2021, pp. 341–353. url: https:
//doi.org/10.1145/3468264.3468544 (cit. on p. 157).

Bibliography 193

https://doi.org/10.1109/TSE.2019.2961897
https://doi.org/10.1109/TSE.2019.2961897
https://doi.org/10.1109/ASE.2019.00137
https://doi.org/10.1145/3468264.3468544
https://doi.org/10.1145/3468264.3468544

Ap
pe
nd
ix A

Curriculum Vitae

195

Luca Di Grazia � www.lucadigrazia.com
� 0000-0002-5306-8645

Major Achievements and Selected Awards
○ Until now: Innovative research in Software Engineering and Generative AI at

prestigious universities (Top-20 in CSRankings for Software Engineering) and a tech
giant (Market Cap > $100B) across multiple countries.

○ 2023: Won GenAI Uber’s competition with my internship project on using generative
AI to boost developer productivity for fixing bugs, beating 103 teams, and presenting
as winners to the Uber’s CEO and ELT.

○ 2022: ACM SIGSOFT Distinguished Paper Award at ESEC/FSE 2022.
○ 2022: Second winner at ACM Student Research Competition at ICSE 2022 for my

project: Efficiently and Precisely Searching for Code Changes with DiffSearch ($300).
○ 2020: Gnome Challenge 2020 winner (1st phase) to Reach a new generation of

open-source coders ($1,000).
○ 2016-2018: Awarded national scholarship to study computer engineering at Poly-

technic of Turin (e 3,000/year).
○ Reviewer for IEEE TSE, ACM TOSEM, Hiring Evaluator for the Max Planck Research

School (IMPRS) for Intelligent Systems (IS) and the European Laboratory for Learning
and Intelligent Systems Systems (ELLIS).

Selected Positions and Experience
From

02/2024
University of Lugano (USI), Switzerland
Role: Postdoctoral Researcher. Supervisor: Prof. Dr. Mauro Pezzè.

09/2019 –
02/2024

University of Stuttgart, Germany
Role: Research and Teaching Assistant. Supervisor: Prof. Dr. Michael Pradel.

05/2023 –
08/2023

Uber, Amsterdam, Netherlands
Role: Research intern (PhD) in Generative AI and AI Prompt Engineering.
Supervisor: Dr. Raj Barik.

Education
09/2019 –

02/2024
University of Stuttgart, Germany
Degree: Ph.D. in Computer Science, advisor Prof. Dr. Michael Pradel.

09/2013 –
07/2019

Polytechnic of Turin, Italy
Degrees: Bachelor’s and Master’s Degree in Computer Engineering. Specializa-
tion in Embedded Systems.

February 6, 2024. References and certificates on request.
Luca Di Grazia

Ap
pe
nd
ix B

Erklärung

197

ERKLÄRUNG

Hiermit erkläre ich, dass ich die vorliegende Arbeit – abgesehen von
den in ihr ausdrücklich genannten Hilfen – selbständig verfasst habe.

Stuttgart, Deutschland, November 2023

Luca Di Grazia

	List of Figures
	List of Tables
	1 Introduction
	1.1 Software Evolution
	1.2 Challenges
	1.2.1 Better Information Retrieval for Software Evolution
	1.2.2 Understanding the Evolution Patterns of Developer Code Changes
	1.2.3 Automatically Performing Code Changes to Fix Bugs

	1.3 Thesis Statement
	1.4 Contributions
	1.4.1 Code Search Survey
	1.4.2 Searching for Code Changes
	1.4.3 Study of Python Type Annotation Evolution
	1.4.4 Automatic Program Repair for Python Type Errors

	1.5 Publications and Resources

	2 Code Search: A Survey of Techniques for Finding Code
	2.1 Introduction
	2.2 Queries for Searching Code
	2.2.1 Free-Form Queries
	2.2.2 Queries Based on Existing Programming Languages
	2.2.3 Custom Querying Languages
	2.2.4 Input-Output Examples as Queries
	2.2.5 Hybrids of Informal and Formal Queries

	2.3 Preprocessing and Expansion of Queries
	2.3.1 User Interface of Query Preprocessing and Expansion Approaches
	2.3.2 Information Used to Modify Queries
	2.3.3 Techniques Used to Modify Queries

	2.4 Indexing or Training, Followed by Retrieval of Code
	2.4.1 Artifacts That Get Indexed
	2.4.2 Representing the Information for Indexing and Retrieval
	2.4.3 Techniques to Compare Queries and Code
	2.4.4 Granularity of Retrieved Source Code

	2.5 Ranking and Pruning of Search Results
	2.5.1 Ranking of Search Results
	2.5.2 Pruning of Search Results

	2.6 Empirical Studies of Code Search
	2.6.1 Setups of Empirical Studies
	2.6.2 Results of Studies and their Implications

	2.7 Open Challenges and Research Directions
	2.7.1 Support for Additional Usage Scenarios
	2.7.2 Cross-Fertilization with Code Completion and Clone Detection
	2.7.3 Learning-Based Code Search
	2.7.4 Deployment and Adoption in Practice
	2.7.5 Common Datasets and Benchmarks

	2.8 Concluding Remarks

	3 DiffSearch: A Scalable and Precise Search Engine for Code Changes
	3.1 Introduction
	3.2 Example and Overview
	3.2.1 Motivating Example
	3.2.2 Problem Statement
	3.2.3 Main Idea of the Approach

	3.3 Approach
	3.3.1 Query Language
	3.3.2 Tree-based Representation of Code Changes and Queries
	3.3.3 Extracting Features
	3.3.4 Indexing and Retrieving Code Changes
	3.3.5 Matching of Candidate Search Results

	3.4 Implementation
	3.5 Evaluation
	3.5.1 RQ1: Recall
	3.5.2 RQ2: Efficiency and Scalability
	3.5.3 RQ3: User Study
	3.5.4 RQ4: Searching for Bug Fixes
	3.5.5 RQ5: Impact of Parameters
	3.5.6 RQ6: Queries vs. Search Results

	3.6 Limitations and Future Work
	3.7 Concluding Remarks

	4 The evolution of type annotations in Python: an empirical study
	4.1 Introduction
	4.2 Methodology
	4.2.1 Extracting and Studying Type Annotations
	4.2.2 Extracting and Studying Type Annotation Changes
	4.2.3 Gathering and Studying of Type Errors
	4.2.4 Selection of Projects to Study

	4.3 Results
	4.3.1 RQ1: Ecosystem-level Evolution of Type Annotations
	4.3.2 RQ2: Project-level Evolution of Type Annotations
	4.3.3 RQ3: Evolution of Individual Type Annotations
	4.3.4 RQ4: Type Errors vs. Type Annotations

	4.4 Discussion
	4.5 Concluding Remarks

	5 PyTy: Repairing Static Type Errors in Python
	5.1 Introduction
	5.1.1 Context
	5.1.2 Significance
	5.1.3 Approach
	5.1.4 Results
	5.1.5 Contributions

	5.2 Background on Python Type Checkers
	5.3 Preliminary Study
	5.3.1 Data Collection
	5.3.2 Results
	5.3.3 Implications

	5.4 Approach
	5.4.1 Automated Data Gathering
	5.4.2 Neural Type Error Fixing

	5.5 Implementation
	5.6 Evaluation
	5.6.1 RQ1: Effectiveness of Automatic Data Gathering
	5.6.2 RQ2: Effectiveness of PyTy
	5.6.3 RQ3: Ablation Study of PyTy
	5.6.4 RQ4: Comparison with Prior Work

	5.7 Discussion and Threats to Validity
	5.7.1 Python Repositories
	5.7.2 Limitations of static type checking
	5.7.3 Type annotations
	5.7.4 Type Errors

	5.8 Concluding Remarks

	6 Related work
	6.1 Analyses of Code Changes
	6.2 Software Evolution Studies
	6.3 Tracking Code Elements Across Version Histories
	6.4 Mining and Learning from Code Changes
	6.5 Clone Detection
	6.6 Type Annotations and Type Errors
	6.7 Type Prediction for Dynamically Typed Languages
	6.8 Automated Program Repair

	7 Conclusions and Future Work
	7.1 Reflections and Lessons
	7.2 Research Vision and Future Work

	Bibliography
	A Curriculum Vitae
	B Erklärung

