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Abstract

This article reports on the results of research aimed to translate biometric 3D face

recognition concepts and algorithms into the field of protein biophysics in order to

precisely and rapidly classify morphological features of protein surfaces. Both human

faces and protein surfaces are free-forms and some descriptors used in differential

geometry can be used to describe them applying the principles of feature extraction

developed for computer vision and pattern recognition. The first part of this study

focused on building the protein dataset using a simulation tool and performing fea-

ture extraction using novel geometrical descriptors. The second part tested the

method on two examples, first involved a classification of tubulin isotypes and the

second compared tubulin with the FtsZ protein, which is its bacterial analog. An addi-

tional test involved several unrelated proteins. Different classification methodologies

have been used: a classic approach with a support vector machine (SVM) classifier

and an unsupervised learning with a k-means approach. The best result was obtained

with SVM and the radial basis function kernel. The results are significant and compet-

itive with the state-of-the-art protein classification methods. This leads to a new

methodological direction in protein structure analysis.
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1 | INTRODUCTION

The structure of a protein is an important indicator of its potential bio-

logical functions, especially its surface, which is exposed to the solvent

and participates in interactions with other proteins and ligands. In a

recently published work1 it was shown how to capture fingerprints of a

protein using deep learning methodology and a strong correlation was

demonstrated between the structure of a protein and its biological

behavior. Another work2 showed the relevant role of protein-protein

interactions using local structural features. In this latter article, geomet-

rical features were found to be interesting in this context.

The first step in the process of classifying proteins is to acquire a

realistic (usually experimental) 3D dataset regarding a protein's struc-

ture. X-ray crystallography has made the largest and most important

contribution to our understanding of protein structure. Nuclear mag-

netic resonance and cryogenic electron microscopy (cryo-EM) are

other methods by which to determine the protein structure3 but they

have various limitations. As an alternative to crystallographic structure

determination, a computational method can be used to generate its

prediction using a three-dimensional model.4 However, proteins are

nonstatic molecular structures, thus a crystallography-generated

image is only a snapshot in time of a protein structure and not a fully
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realistic representation of all protein states, which can be quite

dynamic. Therefore, molecular dynamics (MD) is a useful computa-

tional tool that can be used to produce atomic coordinate trajectories

in order to provide a sampling of structural representations of a given

protein. The method we propose in this article is agnostic to the origin

of the data, which in the case of proteins can either be obtained from

experiments such as cryo-EM or synthetically generated from compu-

tational approaches such as MD. The key aspect is to have an atomis-

tic model of the objects studied,3 which serves as the starting point

for feature extraction based on the protein surface. Such a model pro-

vides a high-resolution representation of the object of interest, which

is later on processed and characterized by a manageable number of

parameters.

A protein can have different equilibrium conformational states

that depend on ambient conditions. Moreover, some proteins are

expressed by several genes leading to different isotypes with a high

degree of structural similarity making accurate comparison important,

so a dataset with significant number of different frames is important

in order to have a statistically significant and valid test set. The most

difficult task would be to distinguish between very closely related pro-

teins or indeed the same protein in its wild type form and a mutated

protein structure. For clearly distinct protein structures, standard

approaches for their comparisons such as the use of the RMSD (root

mean squared deviation) may work reasonably well but providing a

single parameter only for structure comparisons may not always be

useful or sensitive enough to distinguish subtle structural changes

involving, for example, single point mutations or a small number of

amino acid substitutions. It should also be mentioned that while

sequence comparison methods are rapid and reliable, since there is no

general solution to the protein folding problem, sequence compari-

sons are insufficient by themselves to inform us about subtle struc-

tural changes that can distinguish between highly similar protein

structures.

Some experimentation has already been undertaken to classify

proteins according to their states. Tsuda et al adopted a support vec-

tor machine (SVM) classifier for fast protein classification.5 They

obtained 13 classes and reached an accuracy of about 90%. Weston

et al6 used a semisupervised classification with a kernel cluster and

reached a result of 94.3%. Another interesting result has been

obtained using a random forest approach and 15 different supervised

methods with about 11 000 pairs of protein domains leading to an

accuracy of 97.0%.7 Our focus in this article is on accurate differentia-

tion between structurally-similar proteins, which is a much harder

problem to solve than comparing vastly different protein structures.

Many cases of protein families can be found and it is important to be

able to find characteristic features distinguishing proteins belonging

to the same family. This could be valuable with respect to their func-

tional roles in cell biology as well as potential applications in rational

drug design.

One of the most important proteins abundantly expressed in all

eukaryotic cells is the family of tubulin proteins, which is studied in

this article as a challenging test case for this methodology. It is also

highly homologous with its bacterial ancestor, FtsZ, which will also be

used here for comparison. We should stress again that comparing pro-

tein sequences is a trivial problem in bioinformatics while 3D struc-

tural features of folded proteins pose a much greater challenge, which

is addressed here.

In the computational experiment reported below SVM was used

because the quantity of data tested was relatively low, and a deep

learning approach requires large data sets to achieve a high level of

confidence. The novelty of our approach rests with the feature

extraction using geometrical descriptors and its general applicability

to 3D structure characterization, because geometric feature sur-

faces were used with significant results in many other applications

before, for example, References .8,9 We believe that the classifica-

tion provided here can be further improved with more data, more

classes, and a complex neural network. A complex neural network is

one of the applications we are planning to implement in the near

future. We intend to use a convolutional neural network to mini-

mize the cost function to cluster the inputs correctly, because this

could be an efficient way to find a pattern in the input data and it

can be a significant improvement for our objectives. All of which is

planned for future work, especially within the context of geometric

deep learning,10 which nowadays is the state-of-the art of

classification.

Tubulin is a key cytoskeletal protein, which has been exhaus-

tively studied for its applications in several fields, including (a) being

the target for various anticancer drugs11 and (b) the discrimination

of the Saccharomyces complex.12 It is a globular protein with a

molecular weight of 55 kDa per monomer and its numerous

isotypes expressed by separate genes have a broad distribution in

animal and plant cells.13 Tubulin is a building block of microtubules

(MTs) and its stable form is an αβ-heterodimer. MTs play various

important roles in all eukaryotic cells including cell motility, material

transport, and most importantly cell division where MTs form

mitotic spindles.12,13

The novelty of the present work rests with the application of geo-

metrical descriptors coming from the field of face analysis to the clas-

sification of surfaces of proteins, with the aim of adopting this

geometrical information as descriptive features and discriminating ele-

ments to classify proteins. Here, we test the method on the examples

of tubulin isotypes and related proteins (eg, FtsZ). The method can, of

course, be applied to an arbitrary protein or indeed a protein complex

but being able to discriminate between highly homologous proteins

based on the geometrical shapes of their surfaces opens the door to

numerous applications across the field of protein science. The idea

comes from the realization that geometrical properties can well

describe the surface of a 3D object such as a protein and could iden-

tify characteristic features when comparing two or more similar struc-

tures. Proteins surfaces can be split into two outer surfaces by cutting

a plane through the data set including the main axis of rotational sym-

metry. These two halves of the outer surface, similarly to human

faces, differ from one another depending on the protein type, and also

can change their conformational states dynamically, similarly to

human facial expressions. Thus, what in the field of pattern recogni-

tion is called face recognition could be transferred to the context of

54 DI GRAZIA ET AL.
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protein classification according to the typology. These common points

have fostered the interest of uncovering the potentiality of cross-

fertilization between these two fields with the aim of better

categorization.

All eukaryotic organisms carry multiple genes coding for α and β

tubulin (and other variants, for example, γ), which are referred to as

isoforms when comparing tubulin expressed by different organisms.

When a single organism is discussed, various tubulin genes code for

what are called tubulin isotypes. Isotypes have highly homologous

amino acid sequences that appear to have diverged as a result of

accumulated mutations since their separation by distinct speciation

events.14 Amino acid sequence similarity is very high for all tubulin

proteins both within and between diverse species making structural

comparisons difficult. At the cellular level, the roles of the α and β

tubulin isotypes are essential, a result of subtle structural variations

within their sequences15 Several isotypes of the α and β tubulins have

been identified in human cells, their existence and distribution provid-

ing a link to their specific roles in the polymerization and stability of

MTs, among other roles8 making structural differences correlate with

functional roles in cells, importantly including cancer cells. For exam-

ple, βII tubulin has been a common target for chemotherapy drug

action and is involved in protein-protein interactions.2 Hence again,

the structural differences between tubulin isotypes significantly assist

in drug design targeting specific isotypes such as βIII, which is over-

expressed in all cancer cells. Through a search of available protein

sequence databases, a total of 10 unique β tubulin isotypes can be

found, all of which have highly similar amino acid sequences and are

generally well conserved. Sequence alignment, similarity and identity

values of the studied isotype proteins (see below for details) range

between 78% and 98%, indicating a major level of similarity between

these structures. The question that remains is how do these sequence

variations translate into structural differences.

As stated above, MTs are dynamic cytoskeleton polymers present

in all eukaryotic cells made up of the protein tubulin. FtsZ is a close

structural homolog of tubulin within prokaryotic cells, and plays an

important functional role during bacterial cell division. A close rela-

tionship between FtsZ and tubulin can be seen from their very similar

protein structures (Figure 1A). Both α and β tubulin share an approxi-

mate 35% sequence identity with FtsZ.16 Both FtsZ and tubulin can

assemble to form straight filaments. This association is regulated by

guanosine triphosphate (GTP), which is bound in the junction between

adjacent monomers (Figure 1B). FtsZ forms long protofilaments con-

sisting of a single string of FtsZ proteins in contrast to tubulin, which

makes cylindrical MTs. Unlike tubulin, FtsZ does not appear to provide

a structural role throughout the bacterial cell cycle, but instead just

plays a structural role during bacterial cell division, when it forms a

F IGURE 1 Structural similarities between tubulin and FtsZ proteins. The tubulin dimer consists of an α-tubulin and a closely related β-tubulin
monomer. αβ-tubulin heterodimers associate head to tail to form protofilaments and laterally to form the cylindrical microtubule wall. GTP and
GDP nucleotides (ball and stick models) are bound to α and β tubulin, respectively. (B) The FtsZ dimer consists of two identical monomers with
GTP bound to N-terminals (blue). In both (A) and (B) N-terminals (blue) and C-terminals (red) are separated by H7 helices (green). N-terminal
regions show the typical nucleotide-binding motif with parallel β sheets connected by α helices known as the Rossmann fold. By comparing the
two protein structures, the differences in C-terminal regions are obvious. GDP and GTP are shown in ball and stick models. The figures were
rendered using the MOE (Molecular Operating Environment) software. PDB ID for tubulin: 1JFF. PDB ID for FtsZ: 1W5B
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band, known as the Z-ring, around the inner cell wall at the location

where the cell will divide.

The main goal of the research reported here has been to investi-

gate the following issues:

• Whether it is possible to rely on features coming from the field of

pattern recognition and face analysis to geometrically describe

(and classify) the geometrical properties of the protein surface;

• Whether it is possible to recognize different isotypes of the same

protein from a different set of MD snapshots;

• Whether it is possible distinguish between two highly structurally

similar but not identical proteins such as tubulin and FtsZ, and

whether it is possible to distinguish arbitrary proteins with no rela-

tion to each other.

It is worth stating in this context that in general the main goal of

a classifier is to separate objects belonging to different classes using a

number of possible linear separators as shown in the examples pres-

ented in Figure 2.

It is reasonable to expect that using one of these separators one

can get a datum that is on the other side of the hyperplane, which

would then be misclassified because the hyperplane is really near the

ham data.17 SVM is able to find a solution with a larger margin for the

two-separator classifier as shown in Figure 2A. This hyperplane works

better than others as it is expected to reduce the number of misclassi-

fications, because it is the one with the highest margins from the two

sets of data.

The first part of this article describes the development of the

dataset using tubulin isotypes and FtsZ protein as test cases. Then,

geometrical descriptors are computed on the 3D surface of these pro-

teins. They are then converted into histograms and saved in a file. This

file is the input of the classifiers. The code is provided in a pCloud

repository.18 The entire process is shown in Figure 3.

This article is organized as follows. In Section 2 geometrical

descriptors used for implementing the feature extraction are

described. Section 3 is the core of the article and it outlines feature

extraction and classification methods with a detailed description of

the strategies and techniques performed. Section 4 summarizes and

discusses the results comparing them with the-state-of-art results.

Finally, Section 5 summarizes the work and discusses future

developments.

2 | GEOMETRICAL DESCRIPTORS

The surfaces representing both human faces and proteins are geomet-

rically considered as a free form. Thus, features coming from the field

of differential geometry can be applied in order to understand their

local and global properties. Geometrical descriptors are widely used in

the area of 3D face recognition with significant results reported else-

where in the literature.19,20 They underline different characteristics of

a free-form and are an important tool for feature extraction21 within

the context of face analysis.22 In this work, for the first time we apply

these descriptors to proteins and use them for structural classification

purposes.19

The geometrical descriptors used in this research are the follow-

ing geometrical descriptors22,23: mean curvature (Hmean), principal cur-

vatures (k1mean and k2median), the shape index (Smean), the third

coefficient of the second fundamental form (gmean and sin g), and a

descriptor enlightening the symmetry property (Fden2). Considering

that these descriptors rely on the derivatives of the surface (hx, hy),

they well describe the changes in surface curvature (k1mean, sin g,

k2median, gmean, Hmean), depressions and peaks (local minima and max-

ima) of the surface (k1mean, sin g, k2median, gmean, Hmean), the shapes in

terms of the types of surfaces (Smean), and the surface's symmetry

property (Fden2,). These parameters are highly informative of the

investigated surface's geometrical properties. Each descriptor can

underline a specific characteristic of a certain surface. These descrip-

tors are briefly described below in regard to their conceptual order.

The first and second fundamental forms provide the first six descrip-

tors of the set. They are used to measure distance on surfaces and are

defined by the formula:

ds2 = Edu2 + 2Fdudv +Gdv2, ð1Þ

where E, F, G, e, f, and g are their coefficients given by:

E =1+ h2x , ð2Þ

F IGURE 2 Valid solutions
can be found with perceptron in a
binary case (A) and the best
theoretical solution that a
support vector machine classifier
can find (B) [Color figure can be
viewed at wileyonlinelibrary.com]
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F = hxhy , ð3Þ

G=1+ h2y , ð4Þ

e=
hxxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1+ h2x + h
2
y

q , ð5Þ

f =
hxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1+ h2x + h
2
y

q , ð6Þ

g =
hyyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1+ h2x + h
2
y

q , ð7Þ

where h is the differentiable function z = h (x, y) representing the

face/protein surface; hx and hy are the first derivatives of h with

respect to x and y, hxx, hyy, and hxy are respectively the second and

mixed derivatives.

Curvatures are used to measure how a regular surface x bends

in. If D is the differential and N is the normal plane to a surface, then

the determinant of DN is the product of the principal curvatures, and

the trace of DN is the negative of the sum of principal curvatures. At

point P, the determinant is the Gaussian curvature K of x at P. The

negative of half of the trace of DN is called the mean curvature

H of x at P.

The principal curvatures k1, k2 are the roots of the quadratic

equation given below:

x2−2Hx+K =0 ð8Þ

Thus, we can choose k1 and k2 so that:

k1 =H+
ffiffiffiffiffiffiffiffiffiffiffiffiffi
H2−K

p
and k2 =H−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
H2−K

p
, ð9Þ

where,

K =
eg− f2

EG−F2
, ð10Þ

H=
eG−2fF + gE

2 EG−F2
� � : ð11Þ

In terms of the principal curvatures, Gaussian (K) and mean curva-

tures (H) can be written as

K = k1k2, ð12Þ

H=
k1 + k2

2
: ð13Þ

The shape index S, which describes the shape of the surface, is

defined as24,25:

F IGURE 3 Flow chart of the entire protein characterization and classification process. SVM, support vector machine [Color figure can be
viewed at wileyonlinelibrary.com]
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S= −
2
π
arctan

k1 + k2
k1−k2

,S� −1,1½ �,k1 ≤ k2: ð14Þ

Some descriptors highlight particular facial lines, such as Fden2,

which shows visible facial part contours. It can be computed using the

formula:

F

1+ hx
2 + hy

2
: ð15Þ

In a protein, Fden2 can underline different trends of the free form

analyzed. In particular, this descriptor has high and low values in cor-

respondence to concavities and convexities, and values approximately

equal to zero on critical points.

The surfaces of human faces are given by depth maps, which are

manageable as matrixes (X Y Z). For each coordinate pair X, Y, there is

a unique value of Z. Since proteins do not have a default form, their

surfaces are split up in two parts divided into two opposite faces: sur-

faces with a positive Z-axis and those with a negative Z-axis in order

to yield two shells that complete the protein surface.

The descriptors used are mapped onto the surfaces as described

in Section 3.4. These descriptors are calculated for all protein faces

considered in the following. An example of Fden2 applied to both a

human face and a protein is shown in Figure 4A. The descriptor sin g

is built from the application of the sin e standard function applied to

the third coefficient of the second fundamental form (g) (see

Figure 4B).23 Mean and median filters have been applied to the pri-

mary descriptors S, k1, k2, g, and H. Mean and median values are com-

puted in squared neighborhoods of side 5 around each point of the

facial depth maps.23 These descriptors are labeled as follows: Smean,

(see Figure 4C), k1mean (see Figure 4D), k2median (see Figure 4E),

gmean (see Figure 4F), and Hmean (see Figure 4G).

3 | MATERIAL AND METHODS

At the beginning of this section, we give a brief introduction to some

basic concepts related to machine learning (ML), which can be useful

for understanding the methods used in this article. ML is a subset of

artificial intelligence (AI) tools that include mathematical and statistical

models, which complete tasks with experience gained through train-

ing. The quality and amount of the training data have an important

role in this process. ML classifiers can be divided into two types based

on their training methods: supervised and unsupervised learning.

Supervised learning needs a training phase with labeled training data

(ie, sample data containing input-output pairs) in order to learn the

relationship between the input and output data. On the other hand,

unsupervised learning algorithms do not employ labeled training data

and they aim to divide the dataset into clusters without the training

phase. In this work, we use a discriminative model (a supervised

model) that employs SVM. The aim of this model is to determine the

division of different clusters without considering how data are gener-

ated, unlike generative models, which do consider how the data are

generated during the process. In our model, dot-product kernels are

used to compute the similarity between two vectors in a higher

dimensional feature in a more efficient manner. For the SVM, we tried

both linear and nonlinear kernels. As the linear kernel essentially

F IGURE 4 Effects of applying different descriptors (A) F_den2,
(B) sing (C), Smean , (D) k1mean, (E) k2median, (F), gmean, and (G) Hmean to a
human face (left column) and to the tubulin protein (right column)
[Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 5 Sequence alignment of β tubulin isotypes. Each of the human β tubulin isotypes that were identified in our screen of the UniProt
databases were aligned using the MOE package. Prior to performing the alignment, the highly variable carboxy-terminal residues were removed
from each sequence. This was done as the template structure, 1JFF, does not contain any of these residues. At each position within the
alignment, dark blue boxes indicate identical residues; light blue boxes indicate residues that are conserved, while red boxes indicate residues that
are divergent (poorly aligned) [Color figure can be viewed at wileyonlinelibrary.com]
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performs the normal dot-product, the similarity score is calculated as

the length of the projection of one vector onto another. The nonlinear

kernel can perform the dot product in a higher dimensional feature

space. Even though nonlinear kernels may be slower to use due to the

computational complexity, they usually yield more favorable results.

Geometric deep learning is a new field in deep learning that aims to

build neural networks that can learn from non-Euclidean data, for

example from graphs or complex surfaces.

The process we follow in this article starts with the collection of

protein data. In the present example, we focus on tubulin whose

bovine structure has been crystallized and can be found in the Protein

Data Bank (PDB). However, its various isotypes have not been crystal-

lized and hence these structures need to be generated by homology

modeling using the bovine (not human) variant of this protein as a

template. To obtain frames of the protein structure, it is necessary to

run MD simulations for some time, typically 10 to 100 ns and take

snapshots, approximately every nanosecond, at the very moment

when the structure relaxes to an equilibrium conformation. Only the

atoms comprising the protein are kept in the file used for these MD

simulations with the ligand atoms removed in order to avoid false rep-

resentations of the protein since ligands are not part of the protein

and can form an occlusion during the process of protein recognition.

The next step in this computational experiment is to analyze similar

but not identical proteins and their states, for example tubulin

isotypes with each other or a tubulin isotype and FtsZ and to compare

the two for similarities and differences.

The result of these MD simulations is in each case a PDB-

formatted file that is a 3D representation of a protein, which is

converted into a MAT file using a MATLAB script. In the current work

several software packages are used: Matlab 9.5 (R2018b)26 for the fea-

ture extraction using geometrical descriptors, Anaconda 1.9.627 with

Python 3.728 and the library sklearn 0.2229 for the implementation of

classification methods and R-3.5.3 for the k-means algorithm.30

3.1 | Molecular dynamics simulations

The tubulin crystal structures available in the PDB are those for

bovine protein. The bovine tubulin structure of tubulin (PDB ID:

1JFF)31 was used as a template to construct the homology model for

human αβ tubulin isotypes (βI (UniProtKb: P07437), βIIa (UniProtKb:

UniProtKb: Q13885), βIIb (UniProtKb: Q9BVA1), βIII (UniProtKb:

Q13509), βIVa (UniProtKb: P04350), αβIVb (UniProtKb: P68371), αβV

(UniProtKb: Q9BUF5), αβVI (UniProtKb: Q9H4B7), and βVIII

(UniProtKb: Q3ZCM7)) using the Molecular Operating Environment

(MOE) software package.32 Multiple sequence alignment results con-

tained in Figure 5 show that human β-tubulin isotypes exhibit residue

composition variations at different locations.

Sequence similarity matrix and sequence identity matrix of the

tubulin isotypes are shown in Figure 6A,B, respectively. The matrix

values (i, j) for the percentage identity and similarity metrics are equal

to the number of sequence matches between chains i and j, divided

by the number of residues in chain i. Residues are considered identical

if their single-letter code is the same (note that MSE-

Selenomethionine and MET-Methionine are considered “identical”).

Residues are “similar” if their BLOSUM62 substitution score is greater

than zero.

The atomic coordinates of similar but not identical FtsZ dimer

were obtained from the Protein Data Bank as (PDB ID: 1W5B).33 The

coordinates for the missing residues of the proteins were obtained by

modeling using the MOE package.32 Since the C-terminus has not

been included in the electron crystallography data for the tubulin

structure, we did not consider it in our calculations. The missing

hydrogens for heavy atoms were added using the tLEAP module of

AMBER34 with the AMBER14SB force field. The protonation states of

all ionizable residues were determined at pH = 7 using the MOE pro-

gram. Each protein model was solvated in a 12 Å box of TIP3P water.

Na+ and Cl− ions were added in order to bring the salt concentration

F IGURE 6 (A) Sequence similarity matrix and (B) sequence identity matrix of the studied tubulin isotypes. The matrices are heatmap color-
coded (the darker the shade, the more similar the values are) [Color figure can be viewed at wileyonlinelibrary.com]
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to the physiological value of 0.15 M. After minimization, the MD sim-

ulations were carried out in three steps: heating, density equilibration,

and production. First, each solvated system was heated to 300 K for

50 ps, with weak restraints on all backbone atoms. Next, density

equilibration was carried out for 50 ps of constant pressure equilibra-

tion at 300 K, with weak restraints. Finally, MD production runs were

performed on all systems for 100 ns. Ligands and ions were all

removed from the complex after equilibration in order to avoid false

representations of the protein since ligands can form an occlusion

during the process of protein recognition. After equilibration, density-

based clustering algorithm from the AMBER software was used for

cluster analysis of MD trajectories (20). Several snapshots from top

clusters were selected for all further calculations in the study.

The result of our simulation is a PDB-formatted file (a 3D repre-

sentation of all atoms comprising the protein), which is converted into

a MAT file using a MATLAB script.

3.2 | Data augmentation

To expand the dataset for FtsZ, a data augmentation technique is

used where each structure is rotated around the Z-axis in 40� steps.

Subsequently, the 3D protein representation is ready to be used for

feature extraction. It was not necessary to follow the same procedure

for tubulin since we have many examples available. The purpose of

reorienting the z-axis is not only to obtain additional examples, but

also in order to not have a bias inside the classifier, in fact most of the

rotated proteins were used during the test phase. Both hemispheres

of the protein were used to have a complete dataset. Then, to avoid

the over-fitting problem a k-fold cross validation is implemented

with k = 5.

Cross validation is a powerful technique used to avoid over-

fitting. When the model is trained and tested on the same dataset,

high scores can be easily obtained since the model becomes biased. In

this case, low score results are obtained when the model is tested on

an unseen dataset. Using cross validation, the dataset is divided into k

sub parts, called folds. Then, the training is performed iteratively on

the k-1 folds and the remaining fold is used for the testing phase. In

this way, the test set will be a truly unseen dataset for the model. One

such example is shown in Figure 7 (https://probis.nih.gov/).35

At this point, the 3D protein representation is ready and the fea-

ture extraction can be performed.

3.3 | Protein samples

In this computational experiment, we used a total of 889 examples of

tubulin structure files for 9 isotypes, as shown in Table 1.

Using data augmentation, the 13 FtsZ protein samples were

rotated in order to create 65 samples, most of them used only during

the test phase. The binary classification between tubulin and FtsZ was

performed using the samples shown in Table 2.

3.4 | Data processing

The x-, y-, and z-coordinates were extracted from the PDB file. First,

the data were shifted in order to be geometrically symmetric with

respect to x-, y-, and z- axes, that is, the center of the coordinate sys-

tems is the geometric center of the dataset: (x, y, z) ! (x – Δx, y – Δy,

z – Δz), where Δx = (xmax – xmin)/2, Δy = (ymax – ymin)/2, and

Δz = (zmax – zmin)/2. Then, the data were divided into two groups of

positive and negative z-values. Finally, for each group, the exterior

surface with a desired resolution was calculated using “meshgrid” and

F IGURE 7 Tubulin protein image for two different rotations with
respect to the Z-axis. The blue color-code represents not conserved
and red color represents the more conserved as it shown in the scale
bar. The images were taken from https://probis.nih.gov/ [Color figure
can be viewed at wileyonlinelibrary.com]

TABLE 1 Numbers of tubulin isotype structures used

Isotypes Beta I Beta IIa Beta IIb Beta III Beta IVa Beta IVb Beta V Beta VI Beta VIII

Samples 123 128 94 57 128 68 107 62 125

TABLE 2 Sample numbers in the binary classification between
tubulin and FtsZ

Protein Samples

Tubulin 112

FtsZ 65
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“griddata” commands in the Matlab with the cubic interpolation

method.

The descriptors were mapped onto the surfaces as follows. The

surfaces were given by point clouds where points are nonconnected

(not a mesh) and arranged in a square grid. This type of data is called

depth map and can be described by matrices: X, Y, Z, where Z is the

one describing the “surface” and is represented in these formulas as h.

Through Matlab “gradient” function, the derivatives hx, hy … were

evaluated so that other matrices representing the first derivative with

respect to x, the first derivative with respect to y, and so forth, were

generated and stored. Then, the implementation formulas for the

descriptors were calculated on the matrices previously computed and

new matrices were obtained representing every geometrical

descriptor.

For each protein the Z axis was divided in two files: one for the

positive part and the second for the negative part using the formula:

z – max(z) + (jmax(z) – min(z)j)/2. Each part represents a “face” of the

protein and the geometrical features were computed for both the

faces. Then, for every geometrical descriptor a 9-bin histogram was

created with the same equidistance for the X-axis.

The MATLAB code loaded all data and the following processing

steps were performed for all the datasets:

• The class of the protein was extracted from the filename and the

class was recorded in the first column of the dataset matrix;

• Geometrical descriptors were computed from matrix Z (positive

and negative);

• Histograms were created and each bin was written in the right col-

umn of the dataset matrix;

• At the end of each loop the dataset matrix became the input for

the classifier.

The entire process is shown in Figure 8.

In this computational experiment, nine isotypes were used

(indeed, the classifier will work with nine classes). The classes were

chosen one to nine in an ascendant order as shown in Table 3.

This task was performed using a switch case construct. The right

class was written in the first column of the Features Matrix.

3.5 | Feature extraction

For every geometrical descriptor, a 9-bin histogram was created. Since

it is possible that some descriptors have values �C(complex), a check

was performed first. The geometrical descriptors were calculated

using 9 bins and the X-axis values were compressed between −0.2

and 0.2, then the Y-axis values were saved and used as features. Some

examples of histograms are shown in Figure 9.

Finally, when all descriptors for all protein data were computed,

the resultant matrix was copied into a file. For tubulin and other pro-

teins, these descriptors can underline specific characteristic of a cer-

tain surface. They can indicate different trends of the free form

analyzed and they can describe the shape of the surface. The features

are extracted with multiple geometrical descriptors to extract more

details; using this approach, also small differences in convexity and

concavity can be recognized during the classification. Analyzing the

features extracted, the most important features were found from

parameter values of Fden2 and sin g, because analyzing the data these

values were sufficiently different to help the classifier select the right

class. In particular, Fden2 is meant to be descriptive for the its behavior

in the loci of critical points, and sin g for curvature changes, local mini-

mums in convexities and local maximums in concavities, respectively.

3.6 | Classification

The adopted classifiers were k-means and SVM. First, an unsupervised

method was tested (k-means) using 9 clusters and a limited number of

iterations, then a supervised method (SVM) using linear and nonlinear

kernels was used. In these cases, it is not a simply binary classification,

but there are many classes (9) and many features (more than 100), so

some distributions cannot separate the dataset in a linear way or with

F IGURE 8 Protein data processing overview. The input consists of a 3D structure of a protein from either the PDB database or from
homology modeling combined with molecular dynamics simulations. The color selection in the input structure is arbitrarily chosen for better
visualization. The output consists of geometrical descriptor values obtained from a facial recognition algorithm [Color figure can be viewed at
wileyonlinelibrary.com]
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a linear separator as a high misclassification rate is reached. An inter-

esting improvement is to use a nonlinear separator or a kernel trick.

An example of a nonlinear kernel is the radial basis function (RBF) ker-

nel, which in this test led to positive results.

A linear and a nonlinear kernel (RBF in our case) were chosen in

order to see whether a nonlinear kernel can reach better results. The

difference between linear and nonlinear kernel is on the way they

divided dataset into classes. A linear kernel uses a linear function to

divide it and it is less time consuming but also less precise. A

nonlinear kernel uses a nonlinear function, so it can divide the

dataset better. The cross validation has not been performed here

because the results were positive, and hence we have already

avoided the over-fitting problem. The validation part was performed

using a large number of parameters and the best ones were selected

for the testing part.

3.6.1 | k-means

An unsupervised approach was performed using a k-means classifier

implemented in R. The matrix file was loaded and the column with the

label was deleted. Then, the classifier was tasked with finding 9 clus-

ters in the input data and at the end there was a comparison made

between the clustering and the right label.

k-means works in an iterative way and it performs three steps.

In the first step, the dataset is loaded, and the number of clusters is

chosen. The centroids are created in a random position. In the sec-

ond step, each data point is assigned to a nearest cluster. The range

for the initialization of the centroids of k-means is set from 2 to 10.

The Euclidean distance is computed between a point and every cen-

troid. The minimum distance centroid is chosen as the following

cluster:

argmin dist ci,xð Þ2,

where c is the centroid and x the data points.

In this last phase, the centroids are computed again as the mean

of all the data points of the cluster:

ci =
1

j Si j
X

xi,

where Si is the sum of a single cluster. Therefore, new centroid posi-

tions are computed, and this loop continues until the centroid posi-

tions do not change significantly.

The stop condition is given by the following criteria:

• No data points change the cluster;

• The sum of distances is at the minimum;

• The maximum number of iterations is reached.

Therefore, when the convergence is obtained the algorithms

stops.

The final result achieved in this example was 76.6%, which is an

acceptable result, considering that it is an unsupervised method.

Nonetheless, in order to improve the method's accuracy, other types

of classifications were tested by us and we discuss them below.

3.6.2 | Support vector machine

The first test was performed using a linear kernel where λ is a key

parameter of SVM. In fact, the main factors in SVM are setting a large

margin and reducing the misclassification rate. These two properties

are inversely proportional, and the λ parameter helps to find a trade-

TABLE 3 Number of tubulin isotypes used

Isotypes Beta I Beta IIa Beta IIb Beta III Beta IVa Beta IVb Beta V Beta VI Beta VIII

Samples 1 2 3 4 5 6 7 8 9

F IGURE 9 9 bin histograms calculated using (A) Fden2, (B) gmean, and (C) Hmean geometrical descriptor [Color figure can be viewed at
wileyonlinelibrary.com]
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off. A large value of λ is for a small margin, whereas a small value of λ

is for a large margin. The right λ parameter depends on the test data.

The steps used are as follows:

• The dataset is loaded and features and labels are divided;

• The dataset is randomly split into 60% training set, 10% validation

set, and 30% test set;

• The training is performed using a linear kernel. We then use differ-

ent values of λ in the range 10−5 to 105and it is evaluated on the

validation set. The best parameter found on the validation set is

λ = 10−5 with a score of 95.1%;

• The model is tested and scored on the validation set with the best

parameters.

The accuracy obtained changes using different λ values. As a mat-

ter of fact, by increasing the λ value, the optimization will choose a

smaller margin hyperplane, but the best parameters depend on the

dataset and in this case the best value is obtained as λ = 10−5. The

final evaluation on the test set with the best parameter λ = 10−5 was

found to be 92.4%.

The dataset was built using nine different Tubulin isotypes.

Hence, the number of classes used for the SVM classifier was nine;

the same number was used in the k-means test, in order to have

comparable results. The confusion matrix is an important tool to

evaluate the results, since it gives precise information about mis-

classification. A confusion matrix without normalization and a nor-

malized confusion matrix are represented in Figure 10. It this case,

the accuracy is very high, since there is misclassification found only

in one class.

The second test was performed using an RBF kernel. The number

of features used was 112 and the dataset was not large, so an approx-

imation of the RBF kernel was not taken into consideration (22). The

steps used are as follows:

• The dataset is loaded and features and labels are divided;

• The dataset is randomly split into 60% training set, 10% validation

set, and 30% test set;

• The training is done using an RBF kernel. We then use different λ

and gamma parameters in the range between 10−5 and 1015 and it

is evaluated on the validation set. The best parameters on the vali-

dation set are found to be: λ = 100 and gamma = 10−9 with a score

of 98.0%;

• The model is tested and scored on the validation set with the best

parameters.

Note that the achieved accuracy changes significantly using dif-

ferent λ and gamma values. The gamma parameter that is used in the

RBF kernel function is the inverse of the SD of the RBF kernel, which

is used as a similarity function. A small value of gamma indicates a

large variance where two points can be matched as similar. This

results in a smoother decision-making by the model. A higher gamma

value has the opposite effect on the process. The challenge will be to

find an optimum value of gamma for the given data set. Indeed, by

increasing the λ value, the optimization will choose a smaller margin

hyperplane, but the best parameter depends on the dataset selected

and, in this case, the best is 100. The final evaluation on the test set

with the best parameter λ = 100, gamma = 10−9 and the accuracy

obtained was 96.5%.

The same methodology was applied to tubulin and FtsZ

classifications.

4 | RESULTS AND DISCUSSION

In the case of tubulin isotype comparison, the best result was given by

the SVM classifier with an RBF kernel. All results are summarized in

Table 4.

F IGURE 10 Confusion matrix of support vector machine (SVM)
classifier using the radial basis function kernel [Color figure can be
viewed at wileyonlinelibrary.com]
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In the case of tubulin and FtsZ comparison, the best result is also

given by the SVM classifier with an RBF kernel. All results are summa-

rized in Table 5.

These results are competitive with the state-of-the-art results

found in the literature. A fast protein classification method5 based on

an SVM classifier reached an accuracy of about 90% with 13 classes.

Another study7 used a semisupervised classification with a kernel

cluster and achieved a 94.3% accuracy. Consequently, the results of

the present study appear to be significant. This work is a starting point

toward protein classification based on geometrical features and we

expect that even better results can be reached in the future. A natural

continuation of this work can be to study important features of a pro-

tein, for example characterization of a binding pocket36 for a ligand, a

catalytic domain recognition, or a protein-protein interaction

interface.

A larger experiment was performed using several additional pro-

teins in order to provide an increased validation for the method pro-

posed in this article. This test involved four arbitrarily chosen FtsZ

protein structures, namely: 2R6R, 2VAW, 2VAP, and 2VAM. These

structures correspond, respectively, to the following biological spe-

cies: Bacillus subtilis, Pseudomonas aeruginosa, Mathanococcus

jannaschii, and Aquifex aeolicus. In this test 683 samples were used as

given in Table 6.

The results of this test are very encouraging as shown in Table 7,

which summarizes the use of various classifiers for different tests per-

formed and their accuracy levels achieved.

To avoid over-fitting and to generalize the method in a better

way a 5-fold cross validation is performed. In this way, the classifier is

not biased by the test set and it also works well with other proteins.

The last experiment showed that it also works well with four very dif-

ferent proteins. In this test a k-cross validation method was applied

using k = 5.

5 | CONCLUSIONS

A novel method for protein characterization and classification has

been proposed in this article, which is inspired by and uses the algo-

rithms from the facial recognition field. The first application of this

method involves a challenging case of classification of highly homolo-

gous tubulin isotypes using as features some geometrical descriptors

typically found within the context of face recognition analysis. While

human faces and proteins represent very different biological struc-

tures, they are both free-form surfaces and the same types of geo-

metrical features are adopted for their classification and recognition.

The aim of this study has been to implement different classifiers

to be tested on the dataset previously built. In this work, we used the

following approaches: SVM with a linear RBF kernel, and a k-means

algorithm. This methodology and the geometrical descriptors have

been used for protein classification. The first classification was per-

formed using the tubulin protein and nine of its isotypes. The second

application performed used two structurally similar proteins: bovine

tubulin and FtsZ and third application involved four unrelated pro-

teins. In all cases, very encouraging results were obtained.

It should be stressed that until now the use of RMSD as a mea-

sure of similarity has been prevalent in protein biophysics, especially

regarding structural comparisons. However, this approach relies on a

single number, which does not allow for feature extraction or more

detailed shape comparisons, which the present methodology provides.

A single parameter such as an RMSD value can answer the question if

two proteins are structurally similar or not but does not address the

issue regarding which features differ between them. For this reason,

our method can assist in identifying structure-function dependence

when comparing various proteins, even highly similar ones. Since we

only investigate geometrical features, both physical and chemical

properties are not directly involved in our method but can eventually

be extracted by mapping geometrical features back onto to amino

acid distributions underlying them. Also, the number of potential

mutations of any protein, in particular tubulin, is astronomical. Conse-

quently, brute force methods are not viable in classifying the role of

specific mutations regarding the root causes of the conformational

TABLE 4 Tubulin isotypes accuracy results

Classifier Accuracy (%)

SVM with RBF kernel 96.5

SVM with linear kernel 92.4

k-means 76.6

Abbreviations: RBF, radial basis function; SVM, support vector machine.

TABLE 5 Accuracy results for the tubulin and FtsZ binary
classification

Classifier Accuracy (%)

SVM with RBF kernel 98.2

SVM with linear kernel 97.0

k-means 72.3

Abbreviations: RBF, radial basis function; SVM, support vector machine.

TABLE 6 2R6R, 2VAM, 2VAP, and 2VAM samples

Proteins 2R6R 2VAW 2VAP 2VAM

Samples 175 170 168 170

TABLE 7 2R6R, 2VAM, 2VAP, and 2VAM experiment

Classifier Accuracy (%)

SVM with RBF kernel 97.1

SVM with linear kernel 98.0

k-means 62.3

Abbreviations: RBF, radial basis function; SVM, support vector machine.
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changes resulting in dysfunction of a given protein. However, our

methodology based on ML approaches may offer a viable alternative

with numerous potential applications in protein biophysics and

beyond.

In this study, MD has been used to generate additional models of

each protein for the training purpose where each of the models is

extracted from equilibrated MD trajectories after clustering. Cluster-

ing of the trajectory provides us with different conformations of the

same protein from MD trajectories. We used several snapshots from

each structural cluster, which makes it possible to probe diverse sam-

pling of the trajectory. In future work, a larger set of protein structures

will be used to address the issue of structural diversity across the

entire PDB dataset consisting of over 150 000 entries.

The results obtained and reported here are significant: a 96.5%

accuracy for tubulin isotype classification, a 98.2% accuracy for tubu-

lin and FtsZ classification and a 98% accuracy for a set of four arbi-

trarily chosen protein structures. SVM is a classifier with competitive

performance using a small dataset (<3000 samples) and in this case

the results are significant. The application of a neural network can be

a future development using a convolutional type on a larger dataset

(>10 000 samples). The conclusion is that these geometrical descrip-

tors work properly with the description of protein surfaces and they

are accurate enough to properly describe protein surfaces.

Several future developments can be taken in consideration, namely:

• Building a database adding more samples and more proteins;

• Computing more features and testing classifiers, using more geo-

metrical descriptors and filters;

• Applying our method to different data set for the purpose of pro-

tein classification such as hemoglobin classification.37 Additional

proteins of interest that could be investigated using our methods

involve those with significant roles in neurodegenerative diseases

that have been previously investigated using MD simulations, for

example: Josephine domain protein involved in spinocerebellar

ataxia38 as well as Ataxin-1,39 amyloid beta involved in Alzheimer's

disease40 and a host of MT-associated proteins such as MAP-tau.

• Developing more data augmentation techniques to enlarge the

dataset;

• Identifying specific important features on a protein, for example, a

binding pocket for a ligand or a protein-protein interaction

interface.

Other important improvements will be performed in future tests.

First, we will employ neural networks that were applied here with sig-

nificant results with 3D geometrical descriptors.19 Second, using a large

dataset with unnecessarily numerous features the classifier could be

slow, so some feature optimization techniques will be implemented in

order to41 accelerate the training of the kernel machine.
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