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In the rapidly evolving landscape of software engineering, the integration of AI into the Software Development
Lifecycle (SDLC) heralds a transformative era for developers. Recently, we have assisted to a pivotal shift
toward AI-assisted programming, exemplified by tools like GitHub Copilot and OpenAI’s ChatGPT, which
have become a crucial element for coding, debugging, and software design. In this article, we provide a
comparative analysis between the current state of AI-assisted programming in 2024 and our projections for
2030, by exploring how AI advancements are set to enhance the implementation phase, fundamentally altering
developers’ roles from manual coders to orchestrators of AI-driven development ecosystems. We envision
HyperAssistant, an augmented AI tool that offers comprehensive support to 2030 developers, addressing
current limitations in mental health support, fault detection, code optimization, team interaction, and skill
development. We emphasize AI as a complementary force, augmenting developers’ capabilities rather than
replacing them, leading to the creation of sophisticated, reliable, and secure software solutions. Our vision
seeks to anticipate the evolution of programming practices, challenges, and future directions, shaping a new
paradigm where developers and AI collaborate more closely, promising a significant leap in SE efficiency,
security, and creativity.
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1 Introduction
Context. The evolution of software engineering and the integration of AI assistants, like GitHub

Copilot [9] and ChatGPT [8], is dramatically changing daily routines of software developers [6, 27].
Several studies investigated the usage of these tools in the Software Development Lifecycle
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Fig. 1. The SDLC. We specifically focus on the implementation phase.

(SDLC) (Figure 1), evaluating how developers leverage them, showing the unprecedented support
in coding, debugging, and even in the creative aspects of software design [33, 41, 47].

This change in the SDLC is evident across all stages, from planning to maintenance, and promises
to enhance the overall software quality. For example, at the implementation stage, tools like
GitHub Copilot and OpenAI’s ChatGPT already offer real-time coding assistance and suggest
optimizations, reducing the development time and improving code quality. AI advancements have
also revolutionized the testing phase of the SDLC [16, 48]. AI can automatically generate test cases
based on the requirements [35] and code [45], ensuring comprehensive coverage and identifying
edge cases that might be overlooked by human testers. Finally, integrating AI into the SDLC
provides benefits in the continuous learning mechanism. AI tools can learn from each project,
continuously improving their suggestions and assistance, and consequently the overall software
development.

Significance. The significance of leveraging AI in software engineering embodies substantial cost
savings and innovation in a competitive market, by enhancing efficiency, reducing the incidence
of bugs and accelerating the development time. These factors and the recent huge investments
into this domain underscore the potential and the importance of AI in reshaping the future of
software development [43]. Our vision is rooted in the belief that AI, much like a copilot in the
cockpit, serves as an indispensable assistant rather than a replacement for human developers. By
augmenting the capabilities of software engineers through AI, we anticipate a future where the
synergy between human and AI will achieve the creation of sophisticated, reliable, and more secure
software solutions.

Contributions. The importance of focusing on the implementation (coding) phase cannot be
overstated. This phase is critical in determining the quality, reliability, and functionality of software
products. Our article contributes to the ongoing discourse on the integration of AI in the SDLC
[46] with a particular focus on this pivotal phase. Through a comparative analysis between current
practices (2024) and future projections (2030), we aim to highlight the impact of AI tools on the
implementation stage of the SDLC. This analysis will provide insights into how these advancements
not only streamline processes but also fundamentally change the role of developers, shifting from
manual coders to orchestrators of AI-driven development ecosystems. By examining the evolution
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of the implementation phase, we shape a future where developers and AI collaborate more closely,
marking a significant leap forward in the field of SE. In summary, our main contributions are as
follows:

—A comparative analysis to evaluate the impact of AI on the implementation phase of the
SDLC, contrasting current practices in 2024 with projections for 2030.

—We discuss how advancements in AI not only streamline development processes but also
significantly alter the role of developers, shifting them from manual coding to orchestrating
AI-driven ecosystems.

—We envision a future where the integration of AI fosters a closer collaboration between
developers and technology in the SDLC, representing a pivotal advancement in software
engineering.

Article Structure. The article is organized as follows. Section 2 provides an historical introduction
about programming, overviewing the limitations of the current approaches. Section 3 envisions how
current limitations could be overcome; thanks to the introduction of HyperAssistant, an innovative
augmented assistant that, by 2030, will possess the capability to provide comprehensive support to
developers. Section 4 describes a hypothetical workday for a developer in 2024 and 2030, focusing
on the limitations of the AI in 2024. Section 5 discusses the implications for developers and research
in the upcoming years. Finally, Section 6 summarizes the content of the article and concludes
the work.

2 Developers in 2024
The integration of AI with software engineering has unlocked new pathways for tackling a broad
spectrum of challenges across various levels of abstraction. Concurrent with the advancements
in hardware, particularly in GPUs [2], and the progression of techniques ranging from Machine
Learning (ML) and deep learning [50] to Large Language Models (LLMs) [28], there has been
a significant increase in efforts to leverage AI in software development. This synergy not only
enhances the efficiency and effectiveness of software solutions but also paves the way for innovative
approaches to complex problem-solving in software engineering.

2.1 Historical Evolution of Programming
Retrospecting the programming history, we can identify three distinct ages during the evolution of
programming: pre-APIs, APIs, and LLMs, which witness the transition of software development
from monolithic to microservice-based, and then to intellectual applications that involve enormous
natural interactions between humans and software.

Before the advent of APIs, software applications were designed to operate in a standalone way,
which means they were not able to interact with other systems. In other words, the interactions
among different components of the system are tightly coupled with specific workflows during
the era of pre-APIs. Although it is convenient for developers to build a monolithic application at
the beginning of the software development, the consequential product will severely suffer from the
lack of extensibility and flexibility.

Therefore, APIs are proposed to overcome limitations of monolithic applications [12]. APIs
define a collection of protocols for the standardized communication between related systems.
Since different systems are very likely implemented using different frameworks or programming
languages, it is important to have a consistent and controllable way to share information with
each other. Currently, Representational State Transfer and GraphQL1 are the most frequently used

1https://graphql.org/
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standards to design APIs for production usage. APIs are independent from the implementations of
the interoperated systems, so they are flexible and scalable [7]. These characteristics also accelerate
for software companies the transition of software development from monolithic to microservice-
based architecture, where the interactions between distinct microservices are crucial [4].

Recently, LLMs are becoming a new manner of programming due to their incredible performance
and convenience. LLMs are a special type of Generative AI (GAI) system that is capable of
generating texts based on next token prediction. Hence, they’re specially suitable for programming
tasks with hundreds of lines of code. They’re designed to be efficient, scalable, and flexible. These
three unique advantages make LLMs highly popular for programming nowadays.

First, LLMs are efficient. With the help of LLMs, anyone can develop software applications even
without domain knowledge by simply communicating with AI chatbots. End users can draft a
method or a class in a few minutes by explaining, using the natural language, their requirements to
LLMs, that are able to translate them into the implementation [25]. This communication process is
officially called prompt engineering. From this perspective, it’s essential to know how to efficiently
convey specific requirements with LLMs. There are mainly two categories of prompts: zero-shot
and few-shot, where “shot” refers to the simple explanatory example (input and expected output)
within the relevant context provided by the users. With zero-shot learning, users do not provide
any example to the model, relying on the former knowledge acquired by the model during the
training, while in the few-shot learning, the model is provided with some clarifying examples.

Second, LLMs are scalable. Considering the ease of use of LLMs, it is essential to deploy LLMs
on the cloud in a distributed way to serve requests from a handful of programmers. This can be
achieved via distributing model shards across multiple GPUs [30] and caching prompts and the
corresponding generated tokens as key–value pairs [31]. However, some developers prefer to
deploy LLMs on local devices to secure confidential information during inference. Quantization is
designed to facilitate this process by reducing the precision of the model’s weights. Since LLMs
usually have billions of parameters, users can save a significant amount of memory by using 8-bit
floats or even 4-bit floats instead of 16-bit floats to store weights. There are several techniques (e.g.,
ZeroQuant [49] and GPTQ [18]) proposed to quantize LLMs while maintaining the performance.

Third, LLMs are flexible. Since LLMs are trained with a large volume of data collected from the
Internet with a general purpose of inference, they may not perform well for a specific programming
language. But they can be further tailored via fine-tuning or retrieval-augmented generation. For
example, CodeLlama-70B-Python is built on top of Llama 2 for Python-related tasks,2 which is
an ideal tool for Python developers. Similarly, developers using other languages can easily adapt
available LLMs for their specific programming tasks with few fine-tuning efforts.

In a nutshell, LLMs can not only guide junior programmers via tutorial conversations but also
help senior developers accelerate the code understanding and the development process in an even
faster agile manner, because they can delegate tedious coding parts to LLMs and mainly focus on
the critical business logic [36].

2.2 Related Work
Back in 2012, Ammar et al. [1] surveyed the integration of AI techniques into software engineering
processes, aiming to reduce development time and improve software quality. By seeking to bridge
the gap between research and practice in applying AI to software engineering, they focused on
requirements analysis, architecture design, coding, and testing, highlighting practical challenges
and recent research in the area. Concurrently, Harman [22] directed attention toward a heightened
level of abstraction, emphasizing the evolution within software engineering from conventional,

2https://ai.meta.com/blog/code-llama-large-language-model-coding/
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localized, and clearly delineated construction methods toward the orchestration of expansive,
interconnected, and intelligent systems. Harman’s perspective focused on the several challenges
ahead for AI integration in software engineering, such as the ways in which AI techniques can
be used to gain insight to software engineers and the need for balancing automation with human
intervention.

Three years later, Sorte et al. [46] provided a comprehensive overview of how AI techniques
are integrated into various phases of the SDLC to automate and enhance the process. The authors
explored the intersection of AI and software engineering, revealing that despite their separate
development, these fields have much to offer each other. The article identifies key areas where
AI contributes to software engineering (e.g., requirement specification, design, code generation,
testing), while discussing relevant specific AI techniques for each phase of the SDLC. More recently,
Shehab et al. [44] outlined the integration of AI into the SDLC, underscoring the potential of ML to
enhance various phases of the software engineering process, including requirements engineering
and code generation.

Nevertheless, in recent times, we have observed yet another paradigm shift with the emergence
of GAI, which promises to significantly increase productivity [38] through the exploitation of
natural language. Leading the charge are tools like OpenAI’s ChatGPT, Github Copilot, and Google
Gemini, which have become fundamental for developers owing to their remarkable capacity to
augment productivity, foster creativity, and streamline efficiency [17, 41]. In order to understand
how programmers interact with these system, Mozannar et al. [34] introduced the CodeRec User
Programming States (CUPS) taxonomy, aimed at categorizing prevalent activities undertaken by
programmers when utilizing these AI tools. The study involved 21 programmers who completed
coding tasks and retrospectively labeled their sessions with CUPS categories. Key findings revealed
significant time allocations toward activities tailored to interacting with Copilot. Notably, pro-
grammers frequently deferred suggestion verification, resulting in a notable portion of session time
dedicated to managing Copilot’s suggestions. These insights shed light on the inefficiencies and
time overheads associated with the utilization of such systems.

In the realm of developer support, AI assistance has become a focal point of discussion. The rapid
advancement of GAI in recent years prompts speculation on the extent of its future development and
its potential to address researchers’ concerns. Simultaneously, people are increasingly embracing
and adapting these tools, as evidenced by the emergence of prompt engineering [14], which is
gradually narrowing the divide between software and human interaction.

2.3 Limitations of the Current Approaches
The advent of generative AI as a developer’s assistant has also introduced several challenges and
opportunities among researchers and practitioners.

In the world of software development as in any other job, maintaining optimal mental health is
crucial for sustained productivity, creativity, and overall happiness [21]. As developers navigate
through intricate codebases and tight deadlines, the demands of the job can often take a toll on their
mental and physical health. However, at this stage AI assistants focus mostly on solving technical
challenges than human-factor problems related to coding activities.

Limitation 1: The mental health of programmers is frequently overlooked, despite its significant
impact on productivity and overall well-being.

Despite the significant potential of AI in enhancing the software engineering process, especially
with the recent advancements of automated code generation [39], over-reliance on such technology
poses a risk in terms of security and code vulnerability. For example, the analysis of Pearce et al. [40]
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revealed that approximately 40% of the generated programs with GitHub Copilot contains vulnera-
bilities and researchers are working on innovative solutions to avoid security issues introduced
by AI-generated code [23]. Perry et al. [42] investigated whether developers relying on AI code
assistants, like GitHub Copilot, produce less secure code than those who do not. By conducting a
user study involving 47 participants, they found that those with access to an AI assistant produced
significantly less secure solutions compared to those without access. On the other hand, the paper of
Asare et al. [3] revealed that Copilot’s likelihood of introducing vulnerabilities varies with the type
of vulnerability and, most importantly, that GAI for code generation, while not perfect, does not
perform worse than human developers in introducing vulnerabilities.These insights unquestionably
establish a groundwork for further research in this domain.

Limitation 2: Developers often overestimate the capabilities of tools like GitHub Copilot by
deferring the verification of the generated code, introducing more vulnerabilities and bugs.

Another relevant aspect to consider is the limits of these models in understanding semantic
information. For example, Nie et al. [37] showed the significant improvement of the quality of the
code generated for software testing when providing additional semantic information, like similar
statements or the types of the variable defined, that can easily inferred by a developer but not by
AI tools. Moreover, developers did not attribute the right importance to the code optimization,
often using the copy and paste mechanism while programming. Several studies investigate this
phenomenon [5, 24, 26, 29]. Kim et al. [26] showed that, despite the copy mostly involve single
statements, snippets are copied in 25% of the cases, while Baker [5] reported the seek of performance
as reason behind that, with developers that are evaluated on their productivity, pushing them to
verbatim copy code rather than promoting refactoring of old code. Sometimes this behavior is
unintention, with developers that tend to re-implement the same code since they are not aware of
the presence of the same snippet [24].

This is reflected on the limited support for challenging tasks of the software development, like
the optimization or the refactoring of the code.

Limitation 3: Modern tools frequently face challenges in code optimization, resulting in mis-
leading errors and misunderstandings when developers fail to supply the necessary context.

Development’s projects involve several developers, each of one contributing based on their own
skills. For example, the developer that is most familiar with the database management is in charge
of building a reliable data storing infrastructure, while the one with a lot of experience in the front
end will develop an engaging Web page. Dividing these activities among different developers is far
from trivial, and AI assistants are not able to improve the interaction between the team members,
for example scheduling a meeting when a developer is struggling with the task at hand.

Limitation 4: AI tools are not helpful in promoting a synergical interaction between the team
member, thus boosting the overall performance of the team.

Finally, the AI models are not fully integrated in the life of developers, and they are not able to
take informed decision based on each developer, for example favoring new personalized learning
paths. Programming languages are evolving over time. For example, in the last 30 years, more
than 20 different Java versions have been released. Each version introduces new features (e.g., the
lambda expression for Java 8) and makes obsolete some of them. AI tools are mostly trained on past
data, and usually recommend popular solutions, lacking the capability to harness recent language
advancements and present an innovative solution to the problem.
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Fig. 2. Overview of HyperAssistant workflow and its components to improve developer productivity.

Limitation 5: Actual models fail to consider the unique needs and skills of programmers, lacking
on personalized learning resources for software engineers.

3 Developers in 2030
In the previous section, we present the limitations of the novel tools in the software engineering
tasks. Despite the good results achieved, they can still enhance the support provided to developers
during the daily routine. In this section, we envision how developers may benefit from HyperAssis-
tant, a hypothetical augmented assistant able to fully support developers in 2030. The complete
structure of HyperAssistant is shown in Figure 2.

Our proposed system, i.e., HyperAssistant, is composed of five subsystems. The mental health
monitor is specifically designed for tracking the mental state of developers. The fault detector is
used to guarantee quality and reliability of the software under development. The code optimizer
aims to accelerate the coding phase via automatic code completion and automatic code review.
The team coordinator helps reduce invalid or repetitive communication as much as possible. The
skills advisor facilitates continuous learning for developers. Each subsystem takes the developer’s
current mood and code into account and generates suggestions accordingly like a chat agent. The
functionality and the underlying idea of each subsystem is described in detail as follows.

3.1 Mental Health
The integration of HyperAssistant could emerge as a transformative ally for mental health, offering
innovative approaches to support and prioritize developers’ well-being, as it is an essential topic for
their productivity [20]. Here, we delve into three critical areas where HyperAssistant interventions
can significantly impact mental health and the general well-being of software developers.

First, developers often find themselves immersed in coding sessions for many hours, leading
to mental fatigue and decreased productivity. HyperAssistant can monitor developers’ activity
levels and cognitive performance in real-time, identifying signs of fatigue or stress. For example,
HyperAssistant algorithms can analyze typing patterns, code quality metrics, and even biometric
data to detect when a developer might benefit from a break. By suggesting timely breaks, such
as recommending a short walk or a brief mindfulness exercise, HyperAssistant helps developers
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rejuvenate their minds and maintain optimal focus throughout their workday. As a result, imagine
a scenario where a developer has been coding for several hours and begins to make frequent
syntax errors or experiences difficulty in concentrating. AI, equipped with ML models trained
on developers’ behavioral patterns, recognizes these signs of cognitive fatigue and prompts the
developer to take a 10-minute break. During this break, AI suggests engaging in breathing exercises
or listening to calming music, fostering relaxation and mental clarity upon return to work.

Second, HyperAssistant can enhance Integrated Development Environment (IDE) envi-
ronments by personalizing visual elements, such as color schemes and font sizes, to reduce eye
strain and enhance readability. Additionally, AI-powered features can adjust ambient lighting and
background music to create a more conducive atmosphere for concentration and positive emotions
for developers [19]. As a result, consider a developer who spends long hours coding late into the
night. HyperAssistant, aware of the time and the developer’s preferences, adjusts the IDE’s color
scheme to reduce blue light exposure, promoting better sleep quality. Furthermore, based on the
developer’s music preferences and mood indicators, HyperAssistant selects instrumental tracks
with a soothing tempo to create a calming ambiance conducive to focused work.

Last, developers’ mental and physical health are influenced by various factors beyond their
coding activities, including exercise routines, dietary habits, and personal stressors. HyperAssistant
can analyze developers’ lifestyle data, such as fitness tracker metrics and self-reported wellness
indicators, to offer personalized suggestions tailored to their unique needs and preferences. As a
result, suppose a developer has been experiencing increased stress levels due to a combination of
work pressure and personal commitments. HyperAssistant, integrated with the developer’s calendar
and fitness tracker, recognizes patterns indicating high stress levels and suggests incorporating
short exercise breaks or mindfulness practices into their daily routine. Additionally, HyperAssistant
may recommend healthy meal options or provide tips for improving sleep hygiene, addressing
holistic aspects of the developer’s well-being beyond the confines of coding tasks.

Through these examples, it becomes evident that AI-driven interventions have the potential
to profoundly impact developers’ mental health by providing proactive support, optimizing their
work environment, and addressing broader lifestyle factors. Figure 3(a) shows an example of
HyperAssistant for this task. By prioritizing mental well-being alongside technical proficiency,
developers can foster a healthier andmore sustainable approach to software development, ultimately
leading to enhanced creativity, productivity, and job satisfaction.

Solution 1: HyperAssistant has the potential to profoundly impact developers’ mental health by
providing proactive support and optimizing their work environment.

3.2 Fault Detection
In the dynamic landscape of software development, the need for bug-free code remains essential [13].
HyperAssistant emerges as a transformative force, offering novel opportunities for bug detection
and bug fixing. Here, we delve into critical tasks where HyperAssistant stands to revolutionize bug
detection: vulnerability recognition, static analysis integration, and test case generation. Through
these endeavors, HyperAssistant empowers developers to improve software quality and assist in
delivering more resilient software solutions.

First,HyperAssistant can analyze the codebase for potential security vulnerabilities by recognizing
patterns indicative of common security flaws. For instance, it can detect simple logic errors in
real-time as Figure 3(b) shows or even complex errors such as instances where user input is not
properly sanitized before being used in Structured Query Language (SQL) queries, potentially
leading to SQL injection attacks. Upon detection, AI can suggest fixes or propose code modifications
to mitigate these vulnerabilities, such as using parameterized queries instead of concatenating
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Fig. 3. Various HyperAssistant suggestions for improving developer working routine in 2030.

strings for SQL statements. Moreover, AI can integrate with static analysis tools like type checkers
or linters to perform comprehensive code analysis. For example, in Python development, AI can
automatically run type checkers like MyPy to identify type inconsistencies or potential type-related
errors in the codebase [10, 15]. By flagging such issues, developers can ensure code robustness and
maintainability.

Second, upon completion of a function or a class, HyperAssistant can automatically execute it
within a sandbox environment to assess its functionality. By running various test cases, HyperAs-
sistant can simulate different input scenarios to detect any unexpected behavior or failures. For
instance, if a function is supposed to sort an array, HyperAssistant can generate random arrays of
varying sizes and contents to validate the sorting algorithm’s correctness.
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Last, HyperAssistant can assist in generating test cases automatically based on code coverage
analysis and behavior prediction. By analyzing the code structure and potential execution paths, AI
can generate test inputs that aim to maximize code coverage and uncover edge cases. This proactive
approach to test case generation can help improve software quality by identifying bugs early in the
development cycle.

Solution 2: HyperAssistant will offer advanced capabilities for bug detection and bug fixing even
for complex software systems.

3.3 Code Optimization
Generating optimized code and reducing development times, for example reusing existing and
efficient code, is crucial. In 2030, HyperAssistant will be able to monitor in real-time the code written
by developers, being able to find whether the same code is present in the code base, thus preventing
its duplication. Figure 3(c) shows an example. Moreover, HyperAssistant will also monitor online
resources, like StackOverflow, and will suggest to the developer a specific snippet available online,
dramatically reducing the development time.

This support can be extended also to related activities, like commenting and refactoring. Com-
ments are a crucial component in software development, able to convey meaningful information
and make the code clearer. However, sometimes they become obsolete, with developers that change
the code without updating existing comments or javadoc [32]. This behavior is problematic and can
have dangerous side effects, increasing the number of bugs in the code. HyperAssistant will help
developers, ensuring consistency of comments with the written code, and raising warnings where
issues are detected. HyperAssistant will also automatically update the comments, depending on the
preference of each developer, even proposing a refactoring of the current solution and suggesting
meaningful names for the variables.

Solution 3: HyperAssistant will be able to fully support the developers for code optimization,
favoring the usage of existing code and the alignment between code and comments.

3.4 Smart Team Interactions
With the emergence of tools facilitating collaboration among numerous developers on the same
project, like GitHub, ensuring an efficient interaction is essential.

HyperAssistant will boost this aspect, by favoring a more intense and synergical communication
between developers, also improving the task assignment. HyperAssistant will be able to suggest a
developer to ask the support of another team mate for writing a specific function, since it can realize
that the code the developer is writing is more familiar or already written as Figure 3(c) shows.
HyperAssistant will be fully integrated in the team, monitoring the activities of all the members
and promoting smart interaction between them. It will be able to estimate the development time
required for a specific task, based on the long observation of her programming activities, optimizing
the overall coding pipeline.

Moreover, HyperAssistant will be used by the team to generate a first draft of the entire project:
starting from the abstract design, HyperAssistant can write the entire code of the project and then
can assign each part to a specific developer, the one who is more suitable based on her background
knowledge, to check its correctness. HyperAssistant will also act like a reminder of certain tasks
that are often forgotten by developers. It can, for example, monitor the activity of the developer
and suggest to her that it is time to commit the results on GitHub, since it has completed the
implementation of a specific function. It can also automatically schedule meetings between team
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members if it believes that this can be useful, in order to facilitate and improve the software
development.

Solution 4: HyperAssistant will improve the interaction between developers, leading to an
improved task distribution and translating abstract ideas into code.

3.5 Learning and Developing New Skills
Although programming languages evolve rapidly, developers’ knowledge does not always keep the
same pace, often remaining rooted in old yet reliable code. Ciniselli et al. [11] investigated the effect
of the evolution of programming languages in the contest of AI tools, also showing that most of the
methods extracted from GitHub belong to Java 8, released in 2014. This highlights an interesting
trend for developers, that tend to stick to an old stable version rather than experimenting with
novel features.

HyperAssistant can help in filling this gap, suggesting interesting articles to the developer, related
to the code she is writing, and even recommending a new feature that may be useful in that
situation. HyperAssistant can even propose learning courses or tutorials, helping the developer to
fill skill gaps in specific areas and generating ad hoc tests for assessing the progress.

Solution 5: HyperAssistant will assist developers in honing their skills, proposing tailored
learning resources promoting innovative features of the programming language.

4 Developer Daily Routine: 2024 vs. 2030
In this section, we envision a hypothetical working day for a developer in 2024 and in 2030. This
description focuses on the limitations of the AI assistants in 2024, showing all the potential benefits
of the novel technologies that will be developed in the future. In our example, HyperAssistant can
seem intrusive, but each developer can define the information it can access to, thus personalizing
their coding and life experience.

4.1 Developer Daily Routine in 2024
Ashley, the developer in 2024, arrives in the office at 8 a.m. in the morning. She immediately
notices that the code she has written the day before has been changed by a colleague. Obviously,
no comment at all! She spends 45 minutes trying to figure out the meaning of that code and
finally she is ready to code. The task is quite demanding and she spends a couple of hours for the
implementation of the new feature needed in this project. Clearly, a few typos in the code results
in compilation errors, but Ashley patiently resolves them one by one. Finally it is compiling, but
a few test cases give unexpected results. She spends several minutes asking GitHub Copilot to
understand what was wrong with the code but the answers were too generic and useless so she
decided to find the error by herself.

Stressed after 30 minutes of unsuccessful attempts at fixing that bug, she decides that it is time
for a coffee break. In the coffee room, she meets Emma, a senior developer of her team, and she
asks for help. Unfortunately, Emma is pretty busy so they can arrange a meeting for 2 p.m, right
after lunch. Ashley has lunch lost in her thoughts, trying to understand what was the mistake.
The meeting with Emma is extremely helpful. After several minutes of intense concentration, they
realize that a javadoc Ashley has taken by correcting is outdated and not aligned with the code
so she has to fix the code. Emma also suggests looking at a new API released in the last version
of Java that is faster in case she needs to speed up the computation. Unfortunately, Emma has no
time for further help since she has a really busy agenda. Ashley decides to start fixing the current
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version of the method since she is not aware of the new API and, after a stressful day, she does not
want to spend time on a new learning task.

After 1 hour of effort, the code is working but, as Emma perceived, it is too slow. So she looks
online to understand the new suggested API, but the resources are limited and unclear, and it
requires more time than expected. Finally, the working day is over and now the code seems to
work properly, even though an unfixable warning message leaves her pondering. Ashley can finally
go home after a stressful and non-productive working day. And tomorrow (unfortunately) will be
the same.

4.2 Developer Daily Routine in 2030
Ashley, the developer in 2030, arrives in the office and immediately notices that some code has
changed since yesterday. However, thanks to HyperAssistant, a concise summary is presented to
her, highlighting only the pertinent edits. With this efficiency, she swiftly comprehends the updates
and is ready to begin her tasks.

As she starts coding, an intelligent bug detection system notifies her of an error she inadvertently
introduced. The system not only reports the bug but also suggests potential fixes, streamlining the
debugging process. Furthermore, Ashley receives a notification regarding misalignment between
the code and its corresponding javadoc comments. HyperAssistant offers suggestions on how to
align them properly, ensuring code clarity and documentation consistency.

During her work, HyperAssistant recommends a piece of code implemented by a senior developer
in the same company, recognizing its relevance to Ashley’s task. HyperAssistant schedules a
meeting for them by accessing their calendar, providing Ashley with preparatory materials to
review beforehand. Additionally, Ashley is encouraged to take a break before the meeting, as
HyperAssistant detects signs of fatigue, such as typos or syntax errors during the last 10 minutes,
due to a lack of sleep the previous night accessing data from her wearable.

Following the productive meeting, Ashley successfully incorporates the optimized code, en-
hancing the project’s features. With the task completed, AI suggests a balanced lunch from the
Company Restaurant Web site, considering Ashley’s plans for an evening gym session to maintain
her well-being.

What once constituted a full working day for a developer in 2024 is now efficiently accomplished
in half a day, allowing Ashley to tackle more tasks with precision, collaboration, and self-care
in mind.

5 Discussion and Future Work
The comparison between the working days of a developer in 2024 and 2030, summarized in Table 1,
sheds light on the remarkable advancements in AI technologies and their impact on the developer’s
productivity. As a result, we discuss implications for developers and researchers in the community
of software engineering.

5.1 Implications for Developers
In 2024, Ashley’s day is characterized by manual efforts and limited support from technology. She
encounters challenges such as a huge list of code changes made by colleagues, debugging errors
independently, and struggling with outdated documentation. While she seeks assistance from a
senior developer, Emma, the help is constrained by Emma’s busy schedule. Ashley’s reliance on
online resources for learning new APIs further slows down her progress. Despite her efforts, Ashley
faces a stressful and unproductive day.

Conversely, in 2030, Ashley’s experience is drastically different due to advancements in AI
assistance. HyperAssistant streamlines her workflow by providing concise summaries of code
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Table 1. Comparison between Developer Working Routine in 2024 and 2030

AI Assistance AI Limitations in 2024 AI Solutions in 2030

Mental health AI is not able to improve devel-
opers’ mental health

AI can suggest the right moment
for breaks and personalized activ-
ities to improve their well-being

Fault detection AI is limited in automatically
finding bugs and providing bug
fixes for complex software sys-
tems

AI can automatically detect bugs
and vulnerabilities, even recom-
mending how to handle them

Code optimization AI can recommend only simple
code suggestions

AI can optimize the code, mon-
itoring coding in real-time and
suggesting alternatives

Smart team interactions AI is not able to handle or suggest
interactions between colleagues
or teams in the same company

AI is able to support developers
by arranging useful meetings and
fostering developers’ interactions

Learning new skills AI cannot suggest relevant re-
sources or novel programming
language features or APIs

AI can find alternatives involving
new features, proposing tailored
learning paths for developers

changes and intelligent bug detection, significantly reducing the time spent on understanding
modifications and debugging. The system also offers proactive suggestions for aligning code with
documentation, enhancing code clarity and consistency. Furthermore, HyperAssistant facilitates
collaboration by recommending relevant code implementations from within the company and
scheduling meetings with colleagues, enabling efficient knowledge sharing and problem-solving.
Moreover, HyperAssistant demonstrates a personalized approach by considering Ashley’s well-
being, detecting signs of fatigue, and recommending breaks and balanced meals. By leveraging
data from wearable and company resources, HyperAssistant optimizes Ashley’s productivity and
supports her overall health.

Overall, the comparison highlights the transformative impact of AI technologies on developer
workflows in 2030. Developers like Ashley can accomplish tasks more efficiently, collaborate
effectively, and prioritize self-care, leading to increased productivity and job satisfaction. The
limitations and challenges faced by developers in 2024 underscore the significance of advancements
in AI-driven assistance, illustrating the potential benefits of embracing novel technologies in the
workplace.

5.2 Implications for Researchers
The comparison between developer working routines in 2024 and those projected for 2030, as
detailed in Table 1, not only underscores the transformative impact of AI on software engineering
but also delineates crucial areas for future research.

Foremost, the evolution of AI in enhancing developers’ mental health—from its initial inadequacy
to a future where it intuitively recommends breaks and well-being activities—necessitates research
into AI systems that can intricately understand and respond to individual health indicators. Practi-
cal exploration in this domain could involve collaborations between psychologists and software
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engineers to develop AI models that integrate psychological insights with real-time data analysis
for personalized mental health recommendations.

The leap from basic fault detection to advanced, automated bug identification and resolution
by 2030 invites the development of complex algorithms capable of deep code analysis. A practical
research direction could involve partnerships with industry stakeholders to integrate these AI
systems into existing development environments, enabling real-time, context-aware debugging
suggestions based on historical project data and developer preferences.

In the sphere of code optimization, the shift toward AI that provides context-aware coding
suggestions indicates a need for AI assistants that comprehend coding patterns, project intricacies,
and optimization opportunities. Collaborative research with open-source communities could yield
AI tools that learn from vast repositories of code to offer optimization advice, potentially even
contributing code directly to projects.

The anticipated enhancement in smart team interactions through AI, transitioning from a non-
existent to an active role in arranging and enhancing collaborations between developers, points to
a future where AI aids in project management and team dynamics. Practical application of this
research could see the creation of AI-driven platforms that analyze team performance data and
project timelines to suggest optimal collaboration models and work distributions.

Lastly, the transition from AI’s limited capability in suggesting new learning resources to a
bespoke learning ecosystem tailored to developers’ needs underscores the significance of AI in
continuous professional development. This direction could be practically pursued by establishing
partnerships with educational institutions and online learning platforms, utilizing AI to create
dynamic, personalized learning pathways that adapt to the evolving technological landscape and
individual learner goals.

These outlined paths pave the way for a future where AI not only boosts developer productivity
but also plays a pivotal role in their professional and personal growth. Engaging in these research
endeavors is crucial for unlocking AI’s full potential in software engineering by 2030.

5.3 Technical and Research Challenges
The significant gap between the 2024 tools’ capabilities and our vision for 2030 emphasizes some
challenges that need to be addressed. Today’s models lack in generating customized code that is
adapted to a specific developer. They are not able to retain a significant amount of information
about each developer, thus preventing the generation of suggestions that are familiar and adapted
to their personal skills. This poses some challenges also for what concerns the improvement of the
interactions between different developers, with models that may struggle in promoting synergical
interactions based on the capabilities of each team member. To handle this challenge, research may
focus on new and improved ways for creating contextual information that the model AI models can
retain. The enhanced contextual knowledge can be leveraged to create a profile for each developer,
thus enabling personalized suggestions and favoring team interactions.

Another limitation lies in the optimization of the generated code. AI assistants learn from the
code used during the training, that can sometimes be low-quality, containing bugs or vulnera-
bilities. Hence, they also tend to recommend sub-optimal suggestions that can introduce serious
vulnerability issues. A viable solution to mitigate this problem is the improvement of models’
reasoning abilities, allowing them to infer possible drawbacks of the proposed solution and explore
the effectiveness of alternative approaches.

6 Conclusion
In this article, we discuss how AI for software engineering can bridge the gap between the current
limitations and the future potential in areas such as mental health support, fault detection, code
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optimization, team interaction, and learning new skills. The transition from a reactive to a proactive
AI approach in software engineering underscores the technology’s capability to not only understand
and adapt to the individual needs of developers but also to foster a collaborative, efficient, and
health-conscious working environment.

Furthermore, we discuss how AI can serve as a catalyst for interdisciplinary research, merging
insights from psychology, education, and project management to create a holistic support system
for developers. This collaborative approach is crucial for developing AI systems that are not only
technically proficient but also attuned to the human aspects of software development.

In sum, as we discuss the capabilities of AI, it is clear that its integration into software development
heralds a new era of efficiency and well-being. The continued exploration of AI’s potential will
undoubtedly lead to significant advancements, making the professionmore fulfilling and productive.
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